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Abstract
We introduce Alexa Arena, a user-centric sim-
ulation platform for Embodied AI (EAI) re-
search. Alexa Arena provides a variety of
multi-room layouts and interactable objects,
for the creation of human-robot interaction
(HRI) missions. With user-friendly graphics
and control mechanisms, Alexa Arena sup-
ports the development of gamified robotic
tasks readily accessible to general human
users, thus opening a new venue for high-
efficiency HRI data collection and EAI system
evaluation. Along with the platform, we intro-
duce a dialog-enabled instruction-following
benchmark and provide baseline results for
it. We make Alexa Arena1 publicly available
to facilitate research in building generalizable
and assistive embodied agents.

1. Introduction
A longstanding goal of AI is to develop autonomous robotic
agents that can assist humans in day-to-day activities. For
multiple reasons, experiments with robots are often con-
ducted in controlled environments, which limit their variety
and scale. To mitigate this problem, several embodied AI
simulation platforms have recently been proposed. These
platforms support a number of virtual scenes that can be ei-
ther manually designed, synthetically generated, or captured
from real scenes. An embodied agent can freely navigate
and interact with objects in these scenes to complete tasks.
However, the current EAI platforms suffer from a set of limi-
tations that curtail the ability to build generalizable assistive
AI agents.

*Equal contribution 1Amazon Alexa AI 2Work done while
at Amazon Alexa AI. Correspondence to: Qiaozi Gao <qz-
gao@amazon.com>, Govind Thattai <thattg@amazon.com>,
Xiaofeng Gao <gxiaofen@amazon.com>, Suhaila Shakiah
<ssshakia@amazon.com>.

1https://github.com/amazon-science/alexa-arena

Facilitating HRI data collection by gamification. A per-
sistent challenge in HRI is collecting human interaction data
including natural language instructions along with visual
content and actions. Currently available EAI platforms,
however, are not designed for humans interacting with the
agent. As a result, the data collection process is often expen-
sive and time consuming (Mandlekar et al., 2018; Srivas-
tava et al., 2022). Games have been historically utilized to
encourage wide-spread user participation and engagement
with services (Brandle et al., 2021; Ángeles Quiroga et al.,
2015; Ram et al., 2007). To ease the data collection effort,
we introduce gamification to EAI, which is achieved by pre-
senting tasks or user interactions in the form of games, by
introducing scoring mechanisms, achievements and streaks
to stimulate and engage users, thus promoting and more
importantly, retaining their participation.

Reasoning based on visual observations. Tasks in current
EAI platforms have limited in-class variability: each type
of task requires the agent to make use of the same object re-
peatedly. As a result, agents may resort to over-engineering
(over-fitting to specific and simplistic tasks) and memoriza-
tion to converge to trivial and non-generalizable solutions
or use predefined task decomposition mappings (Min et al.,
2022). One way to mitigate this problem is to design mis-
sions that can be completed in multiple ways by interacting
with different objects in the environment with compositional
and causally interconnected state changes. To complete the
mission efficiently, the agent is then required to understand
its current state from visual observations and choose the
subsequent approach accordingly.

To this end, we propose Alexa Arena, a user-centric EAI
platform. For better user experience, the platform design has
commonalities with games, with features like task-guiding
UI elements and engaging visual effects. The platform
boasts many variations of objects and state transitions, on
top of which a variety of missions are designed (Figure 1).
We show one example use case of Arena on dialog-guided
task completion, where the embodied agent can commu-
nicate with the user through natural language to finish an
indoor mission. To help develop models for this task, we
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Figure 1. As an EAI platform, Alexa Arena has a variety of object categories, including a set of fantastical objects as engagement
enhancers, such as the freeze ray (3), the time machine (6) and the color changer (7). As a result, the agent (1) can make use of different
tools to change the state of the object. For example, the agent can use either the freeze ray (3) or the fridge (5) to cool an object. Arena
also has more interaction actions and state changes compared to existing platforms. For instance, the agent can use the time machine to
repair broken objects (6), or use the color changer to change the color of objects (7).

propose a dataset which includes an expert demonstration
for each mission and the corresponding human-annotated
language instructions and dialogues. To evaluate the dialog-
guided agent in real-time, we also release a web-based user
interface (UI) as a proof of concept, where a user can com-
municate with the agent in text and receive visual observa-
tions of the agent from Arena.

This paper makes the following contributions:

1. Alexa Arena as a new user-centric EAI platform which
focuses on building generalizable agents that can assist
humans through reasoning and procedural learning.

2. A dialog-guided task completion benchmark created
from Alexa Arena, including 3K unique tasks and 46K
human annotated instructions and dialogues. We also
present results from baseline models on the benchmark.

3. A web-based user interface allowing real-time user com-
munications and interactions with an EAI agent in Arena.

2. Related Work
Embodied AI platforms. In recent years, many platforms
have been proposed for embodied agents to perform house-
hold activities in indoor virtual environments (Puig et al.,
2018; Gan et al., 2020; Xiang et al., 2020). Most simu-
lators are designed with performance and realism as the
top priorities (Szot et al., 2021). Although some simula-
tors have built-in infrastructure for human data collection
(Gao et al., 2019; Xia et al., 2018), the user interactions
are generally not the focus of their designs. On the con-
trary, Alexa Arena is a user-centric embodied AI platform
with features designed specifically to enhance user experi-
ence: 1) the platform includes engage-enhancers, such as
fantastical objects and a scoring system for each mission;
2) for better visual effects, actions in Arena are animated in
a continuous played-out fashion for both manipulation and
navigation actions; 3) the platform features a unique user
interface with several elements to provide users with better
task guidance, including minimap, sub-task hints and sticky
notes, all of which work in an integrated fashion to improve
user-experience. There are also several EAI platforms that
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Object Object 3D Real Human Game
Platforms Scenes Types Multi-room States Env Scenes Control Ready
Malmo (Johnson et al., 2016) 17* 1000+ 3 3 MK 3
Overcooked (Carroll et al., 2019) 6* 5 3 MK 3
Deepmind Lab (Beattie et al., 2016) 28* - 3 MK 3
AI2-Thor (Kolve et al., 2017) 120 125+ 3 3 3 MK,VR
iGibson (Xia et al., 2018) 15 390+ 3 3 3 3 MK,VR
Habitat 1.0 (Savva et al., 2019) 1000 - 3 3 3 MK
Habitat 2.0 (Szot et al., 2021) 105 90+ 3 3 3 3 MK
VirtualHome (Puig et al., 2018) 7 170+ 3 3 3 3 NL
TDW (Gan et al., 2020) 15 200+ 3 3 3 VR
VRKitchen (Gao et al., 2019) 16 200+ 3 3 3 VR
Alexa Arena 10 335+ 3 3 3 3 MK,NL 3

Table 1. Comparison with other platforms. Scenes and objects: the number of scenes and interactable object types the platform provide.
Multi-room: multi-room scenes. Some platforms marked by * are customizable and new scenes can be added. States: agent can change
object states via interactions. 3D env: whether the platform supports 3D virtual environment. Real scenes: whether the scenes in the
virtual environment are realistic. Human Control: the interface for the human to control the agent. MK: mouse and keyboard. NL:
natural language. VR: virtual reality. Game ready: whether the platform has game-ready features to enhance user experience, including
environmental and interaction sounds, action animations, smooth navigation, fantastical objects, hazards, mini-map, scoring mechanism
and hints.

are inspired by video games (Johnson et al., 2016; Beattie
et al., 2016; Tian et al., 2017; Carroll et al., 2019; Gao et al.,
2020; Yuan et al., 2022), but the scenes are often unrealistic
and the agent visual perceptions are simplified. See Table 1
for a comparison between Alexa Arena and other embodied
AI platforms.

Language-guided navigation and task completion. Most
existing work for learning language-guided embodied agents
focuses on navigation tasks (Anderson et al., 2018; Nguyen
& Daumé III, 2019; Chi et al., 2020; Roman et al., 2020).
For increased task complexity, (Misra et al., 2018; Shridhar
et al., 2020) enable the agent to follow natural language
instructions and complete household activities, where both
navigation and object manipulation actions are required.
Most recently, (Padmakumar et al., 2022; Gao et al., 2022)
propose new datasets and benchmarks for training and eval-
uating task-oriented embodied agents that can engage in
dialogue. However, based on the AI2-Thor simulator, both
works use offline settings where the dialogues are either
pre-collected from humans or generated with templates. In
comparison, the Arena platform enables embodied agents
to communicate with human users in a real-time interactive
fashion to finish the task.

Task planning with large language models. Recently,
there is a growing trend of using large language models
(LLMs) for assisting robot task planning in learning novel
activities or completing complex tasks (Ahn et al., 2022;
Wang et al., 2023). LLMs have been shown to be good at
providing high-level semantic knowledge about the physical
world and common human activities (Huang et al., 2022a;
Singh et al., 2022). When combined with the sensory per-

ception of the embodied agent, such knowledge can of-
ten substantially improve the agent’s capability of solving
complex tasks in unseen scenarios (Inoue & Ohashi, 2022;
Huang et al., 2022b). The Arena platform provides a good
testbed for this line of work. With numerous object types,
properties and state changes, along with various environ-
mental causal events, Arena supports the creation of robot
tasks that require adequate reasoning capability on common
world knowledge.

3. The Arena Platform
In this section, we describe the Alexa Arena Platform. We
briefly describe the overall framework, attributes of the
simulator and tools that we are releasing as a part of the
platform to bootstrap development with Arena.

3.1. Architecture

The architecture of the Alexa Arena framework is illustrated
in Figure 2. The core components of the platform are the
arena wrapper and model wrapper. The arena wrapper
houses the arena orchestrator, which takes as input the con-
figuration file (described in Section 3.2), and communicates
with the arena engine, which contains the the arena simula-
tor and the streaming server. The streaming server in the
arena engine streams the robot’s first party camera view to
human users. The model wrapper contains the inference
model and the model executor that interfaces between the
model and the orchestrator. The model wrapper can be mod-
ified to develop other models and execution strategies. In
addition, we also provide a web interface (the webtool) for
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Figure 2. Overview of Alexa Arena Platform Architecture. The
core modules are the arena wrapper and model wrapper. The
arena engine contains the simulator and the streaming server. The
metadata from the Arena Engine are sent to the inference model,
which generates actions to be executed in the simulator. We have
also built infrastructure to generate results submission files for
EvalAI challenges.

interacting with a robot model in a chatbot like interface,
while also watching the game play out in streaming on a
web page (Figure 3).

3.2. Challenge Definition Format

To define the mission configurations, we introduce a schema
called Challenge Definition Format (CDF). A CDF file is
a json-format file that is readable by Arena. It contains
the necessary information to configure, initialize and run a
game mission in Arena. These include:

1. Game initial state: game scene setting, robot initial
location, object initial location and initial states (such as
cabinet door being open or closed).

2. Game goal condition: robot and object states that need
to be satisfied. Once the goal condition is met, the game
mission is considered completed.

3. Game-related text data: textual data that help guide the
user to finish the game, including game mission description
text, sub-goal descriptions, system prompts during game
play, etc.

The motivation for designing and utilizing the CDF is to
allow programmatic generation of large numbers of game
missions, which is essential for data collection. Since manu-
ally defined game missions are not scalable for generating
large-scale training data for ML models, with the easily

configurable CDF files, we can generate thousands of game
missions by permuting scenes, robot location & states, ob-
ject types, object location & states, and mission goal states.
The other advantage is that since the CDFs are human read-
able, we can specify new game missions flexibly without
writing code.

3.3. Environment Metadata

The environment metadata in Arena contains robot camera
view images, agent state, objects state, scene metadata, goal
condition status, and previous action execution result. To
facilitate different task and modeling settings, the robot
camera view images support different modalities, including
RGB image, depth image, instance segmentation image
and normals image. The metadata response from the arena
simulator is updated after each action execution.

3.4. Objects Properties and States

There are 336 unique objects in Arena. Each object has
a set of properties (i.e. affordances), which specify if a
certain type of robot-object interaction is possible. For
example, the agent can toggle the 3-D printer since it has
an object property toggleable. At the same time, the agent
cannot pick it up since it does not have the pickupable
property. In total, there are 14 object properties, including
pickupable, openable, breakable, receptacle, toggleable,
powerable, dirtyable, heatable, eatable, chillable, fillable,
cookable, decor and infectable. Each object property has
a corresponding action and object state upon acting. For
example, break is the corresponding action for breakable,
and broken is the corresponding state after the action has
been performed. The states of objects will change as a
consequence of the action, given that the pre-conditions are
met. For example, if powered on (Fig. 1 (2)), the 3-D printer
can be used to make toys (Fig. 1 (4)).

To further mimic the complexities of real-world tasks and
execution strategies, along with numerous object types and
properties, Arena also provides a variety of constraints de-
fined by commonsense causal events. For example, the
power system enables a series of causal constraints on us-
ing electric appliances, e.g., the fuse box needs to be reset
before lights being turned on, the microwave needs to be
plugged in to the outlet before it can be powered on. Agents
in Arena also have multiple ways to complete a task, e.g., To
heat something, the agent can make use of either the Laser
or the Microwave. As a result, the agent needs to reason
based on its current state for efficient task completion. As
an example, consider the task of heating a bowl and deliv-
ering it to a receptacle in the Quantum Lab, and the agent
is currently in the Quantum Lab. If the agent’s execution
path to heat the bowl using the Laser in the Quantum Lab
is physically obstructed, it is more efficient for the agent
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to go to the Breakroom, heat the bowl quicker using the
Microwave and return to deliver the bowl in the Quantum
Lab. While this may seem inefficient at the outset (to go to
another room as opposed to completing the mission with an
object in the current room), experience-based long-term rea-
soning could confer the agent with the skills to take efficient
steps to complete the mission. With such flexible task com-
pletion enabled by causal constraints, object variations and
state transitions, Arena can be used as a test bed for situated
commonsense reasoning and high level task planning.

3.5. Robot Action Space

In general, Arena supports two kinds of actions: 1) user
interaction actions for communicating with the user both
textually and visually, and 2) robot physical actions to inter-
act with the simulation environment. There are two types of
robot physical actions - navigation actions and object inter-
action actions. For better user experience, all the navigation
and interaction actions are animated in a continuous fashion
and environmental sounds are played during the animation.

User interaction. To communicate with the user, the robot
can initiate a dialog, the contents of which are displayed
on the user interface (Figure 3). The robot can also high-
light objects for real-time visual confirmation and language
instruction disambiguation.

Navigation. The goal of Arena is to focus specifically on
compositional task learning and reasoning, instead of indoor
navigation. To this end, we simplify the navigation in Arena
by enabling the robot to directly navigate to a viewpoint
in a room by specifying the viewpoint name or the room
name, or to an object by specifying the object mask. Mean-
while, if preferred, the robot can also perform step-by-step
navigation by a combination of local primitive actions like
MoveFoward, MoveBackward, and Rotate actions which can
take granular inputs as arguments. To help the robot per-
ceive its immediate surroundings and navigate to objects in
its vicinity, the platform also supports a special lookAround
action that enables the robot to get panoramic images.

Object interaction. Arena supports 11 actions for object
interaction, including Examine, Pickup, Place, Open, Close,
Break, Pour, Toggle, Fill, Scan and Clean. Each action is
associated with a set of objects in a specific state in which
the objects can afford that action to be performed upon them.
E.g., toggling can be performed on a Time Machine when it
is in a closed state. Interaction actions are accompanied by
a change in the associated object’s state, which gets updated
in the environment metadata.

3.6. Enhanced User Experience

Improved user experience is one of the hallmarks of the
Arena platform, aiming to bootstrap the data collection and

EAI evaluation process with human users in the loop. There-
fore, we incorporate into Arena elements that enhance ap-
plication usability and improve engagement quality.

1. We provide a Sticky Note object that can be populated
with textual hints and guidelines for the mission. Exam-
ine is a special action designed for the user to interact
with the Sticky Note object to read the hints, if needed,
for completing the mission goals. The hints mechanism
can be used as an auxiliary aid to signal the user inter-
acting with the agent for purposes of data collection or
educating the user about the environment or task goals
(these are not considered to be a part of the agent algo-
rithm or the dataset as a result). This can be configured
using the CDF.

2. The user interface also allows displaying the goal and
sub-goal texts on screen which remind the users of the
subgoals that need to be completed in order to complete
the mission. This functionality also displays a check
mark for a goal if it is completed. This is different from
the Sticky Note, which is designed to guide users to finish
the mission.

3. We also embed a minimap in the user interface which
displays the real-time position and orientation of the
robot in the layout, along with the room names and a top
view of the floor plan (Figure 3). It also features strobing
signals to capture human attention and guide the users to
the location of the Sticky Notes.

4. The platform showcases high quality graphics, allowing
streaming with continuous animations, i.e., actions like
opening and closing an object, or navigating from one
point to another are animated and seamlessly played out
in real-time to the user. In addition, to induce a more
engaging and vivid user experience, the environment also
animates certain object states like a sparking power cable,
steam coming off a hot coffee, or a laser beaming through
the air. These animations are visible for objects being
interacted with, as well as for objects in the background
that are within the agent’s field of view. This makes the
scenes more natural, user-friendly and engaging during
mission play.

5. To enhance and retain user participation, we gamify the
missions on Arena. In addition to the incorporation of
fun and fantastical objects like Time Machine and Color
Changer, we also have a scoring mechanism which is dis-
played below the minimap (Figure 3). This is designed
to be a count down system that reduces in value as time
passes by. This can be used to motivate users to achieve
higher scores and also to evaluate the agent.
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Figure 3. The web-based user interface. The user can use the chat box to communicate with the agent in Arena for task completion.
Meanwhile, video from Arena is streamed in real time to show the progress. The minimap is displayed on the top right corner of the game
UI, showing the room layout and the robot location and orientation. The mission goal and subgoals are displayed to the users in text on
the top left corner of the UI.

4. A Dialog-guided Task Completion
Benchmark

We now present the Dialog-guided Task Completion bench-
mark. The benchmark is designed to evaluate dialog-guided
agents for indoor object interaction tasks. To support model
development, we release a hybrid dataset where ground-
truth robot action trajectories are paired with human an-
notated language. We also set up a challenge2 on EvalAI
(Yadav et al., 2019) and encourage researchers to participate.

4.1. Task settings

Tasks in the challenge require the agent to follow natural
language instructions from the user, and perform naviga-
tion and object manipulation actions in a virtual environ-
ment. Each task instance is specified by the start states
and the goal completion states of a scene, and a sequence
of human instructions. The goal of the agent is to in-
teract with the environment through a series of actions
by following the human instructions to achieve the goal
states. There are 12 unique tasks types in the challenge,
including pickup&deliver, heat&deliver, freeze&deliver, re-
pair&deliver, fill&deliver, color&deliver, clean&deliver,
pourContainer, breakObject, insertInDevice, toggleDevice

2https://eval.ai/web/challenges/challenge-page/1903/

# scene # task # session # instr # dialog
Train 6 2661 7983 40443 40105
Valid 6 383 1149 6120 6128
Total 6 3044 9132 46563 46233

Table 2. Trajectory Dataset Breakdown. # session represent the
number of data sessions. Each data session corresponds to one
language annotation on a given task. # instr stands for the total
number of instructions in each data split. # dialog is for the total
number of question and answers.

and scanObject. Examples of data points in a few task types
are illustrated in Figure 4.

4.2. Trajectory Dataset

To enable training and evaluation of the embodied agent,
we collect a dataset containing expert action trajectories,
human language instructions and questions and answers for
missions. We split the demonstrations and human language
annotations into training and validation folds. There are
2661 tasks in training and 383 in validation, each task are
annotated by 3 annotators. Each human annotation is con-
sidered one episode, which gives a total of 7983 training
episodes and 1149 validation episodes (Table 2).

https://eval.ai/web/challenges/challenge-page/1903/
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Tasks Heat & Deliver Freeze & Deliver Repair & Deliver Color & Deliver

Scene # 101 105 110 104

Objects Bowl, microwave, 
desk

Mug, freeze ray, 
table

Floppy disk, time 
machine, fridge

Apple, color 
changer, desk

Instructions Take the bowl Go to the freeze ray 
target

Carry floppy disk to 
time machine

Go to the color 
changer station

Questions Where is the bowl? What does the 
target look like?

Where is the time 
machine?

Where is the 
station?

Answers On the tan table 
next to the fan

It is the blue tray 
attached to the wall

The time machine is 
in the corner of the 
countertop

To your left in the 
southwest corner of 
the room

Expert 
demonstrations

Figure 4. Examples in our trajectory dataset. Each data session corresponds to one language annotation on a mission that needs to be
completed in a specific scene. Each language annotation includes a sequence of instructions guiding the robot to complete the task, as
well as questions and answers for clarification. Expert demonstrations are provided for developing the model.

Figure 5. Process of generating game missions and expert demon-
strations.

4.2.1. EXPERT DEMONSTRATIONS

The game mission and expert demonstration generation pro-
cess is illustrated in Figure 5. In step one, game missions are
programmatically generated via sampling from initial envi-
ronment states (e.g., game scene, robot initial location, task-
related objects and their states) and mission goals. Once
the game missions are defined, the next step is to gener-
ate expert demonstrations using a planner. Along with the
game definitions, we also generate PDDL (Planning Do-
main Definition Language) planning problem definitions for
each game mission. A symbolic planner is used to solve
the planning problem and the output action sequence is col-
lected as the expert demonstration. One thing to note is that
the planner has access to the game metadata, which is not
available to the agents during inference time. For tasks that
can be completed in different ways (e.g., by using different
tools), we pick one unique way for each task to generate
expert demonstration. For example, for freeze and deliver,
in some missions the fridge is used to cool the object, while
in other cases the freeze ray is used.

4.2.2. HUMAN LANGUAGE ANNOTATION

To collect natural language dialogue for the missions, we
design a two-stage data annotation process on Amazon Me-
chanical Turk (AMT). The first stage is for collecting in-
structions and the second is for questions and answers. In
both stages, the annotator watches a video containing an
expert demonstration for the mission and provides the anno-
tations in free-form text data or answers to multiple choice
questions.

In the first stage, annotators are told to write instructions
to tell a “smart robot” how to accomplish a task. During
the process, an annotator first watches the video of the
ground-truth robot actions, then writes instructions for each
highlighted video segment. Fig. 9a shows the user interface
for collecting language instructions.

After all the instructions are collected, we start the second
stage of annotation, where the annotators are asked to raise
questions to better complete the task, as if they are control-
ling the robot to follow the instructions. They also need to
subsequently answer their own raised questions. Similar
to (Gao et al., 2022), the questions choices in the second
stage of annotation are generated using predefined templates.
Given an instruction, we extract nouns and insert them into
the templates to construct questions. The nouns extracted
correspond to query objects that the agent needs more in-
formation about to complete the mission. For more details
on the human language annotation process, see Appendix
A.1.1.
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• CDF
• RGB Color Image File
• Segmentation Image File
• Image Annotations
• Depth Image
• Object States
• Object Locations
• Robot Position and Orientation
• Metadata Response
• Commands

Vision Dataset
Raw Files

metadata RGB Color Image Segmentation image

Figure 6. Overview of the vision dataset. The dataset consists of
RGB and ground truth segmentation images in png format, along
with a json file for each image with the metadata information.

4.3. Vision Dataset

Visual perception is integral for EAI agents to navigate
and interact within their environments. Visually intelligent
robots use visual cues to set navigational targets and build
visual representations based on perceived object state transi-
tions. To facilitate visual AI research within and outside the
context of EAI, we are releasing a vision dataset based on
Arena. The dataset is composed of 600k training images and
60k validation images spanning 336 unique objects from
more than 160 semantically grouped object groups. This can
be used for large scale computer vision research on Arena,
e.g. object detection, object state classification, etc. The
overall structure and contents of the dataset are illustrated in
Fig. 6. The vision dataset is collected by programmatically
configuring CDFs and initializing scenes with all objects
spawnable in the Arena environment. We then navigate to
each of them to capture images from different perspectives
and distances. Detailed vision data generation process is
described in Appendix A.1.4.

5. Baseline Models
We provide two baseline models trained on the trajectory
and the vision datasets, and evaluated on the validation
trajectory dataset. The inputs to the models are the first
party view of the agent and the natural language instruction.
The outputs are a series of action sequences (and associated
interactable masks, where necessary) to be executed in the
environment to complete the task at hand.

5.1. A Neural-Symbolic Approach

Episodic Transformer (ET) is a multi-modal Transformer
model for visual-language navigation (Pashevich et al.,
2021). ET uses the historical visual and language infor-
mation in the entire episode to capture long-term depen-
dencies between actions. It was originally designed for the
Alfred Challenge (Shridhar et al., 2020). We applied the

Episodic Transformer model on our challenge, with a vision
model trained on the Arena dataset for object detection. The
architecture is shown in Figure 7a.

5.1.1. VISION MODEL

We use the vision dataset to train a Mask-RCNN image
segmentation model (He et al., 2017). We process the object
classes in the vision dataset to group them into 86 semantic
classes including the background class. The model takes
as input an RGB image and predicts masks for all object
instances (across the 86 object classes) present in the image
along with their class labels and confidence scores. The
masks and object class predictions are then used in conjunc-
tion with the action and object predicted from the multi-
modal transformer to give a single mask prediction for the
interactable object.

The vision model is trained for 22 epochs with a learning
rate of 0.00125 and a weight decay of 0.001 with the SGD
optimizer, decaying the learning rate after 15 epochs by a
factor of 0.1. We use a global batch size of 16 and trained
the model on 2 Tesla V100 GPUs.

5.1.2. EXPERIMENTAL SETUP

The multi-modal Transformer model uses the previous ac-
tions, previous visual observations and the full utterances of
the episode to predict the next action type and object class
before a stop token is predicted as the action. For the visual
observations, we first extract features using the backbone of
the vision model trained on the vision dataset before sending
them into the transformer. During training, after each look
around action, the model uses the observations from differ-
ent directions to predict rotations: the number of rotation
depends on which image out of the four panoramic images
is used by the following actions in the expert demonstrations.
During inference, the vision model detects all the objects
from the current image, and uses the predicted object class
to generate the mask for the corresponding object. Note that
if the vision model detects multiple object instances of the
same class, we select the one with the highest likelihood.

For language utterance, we tried using only the human in-
structions, as well as the instructions plus the questions and
answers as input. We use two tokens to efficiently encode
the predefined questions, including (i) a token representing
the question type (i.e. loc for questions asking about object
location, app for object appearance, dir for direction and
ref for reference), and (ii) a token for the target object in
location, appearance, referential questions. For example, a
question asking about the appearance of a microwave will
be encoded as app microwave. Since the direction question
is asking about the direction and not related to an object,
the second token is not necessary and thus omitted for this
type of question. For questions that are not of the predefined
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Figure 7. Model architecture. a) Neural-Symbolic approach which uses unshared modules to predict actions and masks, and heuristic
rules for visual grounding. b) A vision language model that does end-to-end action prediction and neural visual grounding.

types, we include the whole question and answers.

We trained the transformer model for 20 epochs with a batch
size of 2. We use the Adam optimizer with a learning rate
of 1e−4 for the first 10 epochs, and 1e−5 for the remaining
epochs.

5.2. End-to-end Vision language Model

We experimented with an end-to-end vision language (VL)
model to predict the actions and the interactable masks
given a natural language instruction and the first party view
of the agent. This model uses the disambiguation informa-
tion present in the natural language instruction to do visual
grounding, i.e. it predicts a single mask for the interactable
object instance as opposed to using rule-based grounding.

5.2.1. EXPERIMENTAL SETUP

The architecture of the model is shown in Figure 7b. A
high level natural language instruction is encoded using a
transformer model. For demonstrating the usefulness of the
dialog induced questions and answers (QA), we experiment
with encoding just the language instruction (without QA),
as well as the language instruction, question type and the
answers to the associated questions to include contextual
and disambiguation information (with QA). We use the same
tokens as the ET model to encode the question type. The
egocentric RGB image is encoded using a ResNet (He et al.,
2015) or ViT (Dosovitskiy et al., 2020) backbone. We use
the ResNet backbone for our experiments. The image and
language encoders are initialized with pre-trained weights
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from CLIP (Radford et al., 2021). The visual and language
features are then passed through a joint VL encoder that
outputs a combined vision-language embedding. This is
then channelled through two heads:

1. The task planning head takes the encoded VL embedding
through an autoregressive LSTM module consisting of
two layers. This component encodes historical context
of the previous predicted outputs, which is then passed
through two linear classifiers to predict the (action, ob-
ject) pairs associated with the input language and image
features.

2. The mask prediction head uses the current RGB first
party view, the encoded language and the action-object
prediction hidden state from the task planning head to
predict a single mask referring to the object to be inter-
acted with. We use the referential image segmentation
architecture described in (Wang et al., 2022) for predict-
ing a single mask for the interactable object instance that
the language instruction is referring to.

The above procedure is repeated for a natural language
instruction and a series of first party views until an End-of-
Sequence (EOS) flag is emitted by the task planning head
(which is modelled as a separate binary classifier for every
time step).

For training, we use a learning rate of 1e−6 for the backbone
and mask prediction head, and 1e−4 for the action prediction
head. We use the Adam optimizer with a weight decay of
1e−5 and a learning rate decay of 0.1 after 35 epochs. The
model is trained for 65 epochs with a global batch size of
64 (16 per GPU) on 4 Tesla V100 GPUs .

6. Results and Discussions
We present the results on the trajectory dataset. The mod-
els are trained on the training split, and evaluated on the
validation split.

6.1. Evaluation Metrics

6.1.1. AGENT EVALUATION

We expect that a good embodied agent should be able to
finish the missions efficiently. To achieve this goal, the agent
should understand the human instructions and generate a
corresponding sequence of actions. Thus, we evaluate the
agent using the following metrics:

• Mission success rate (MSR). For each mission, there is
a mission success variable m indicating whether the goal
conditions have been met for the mission. m = 1 if all
the goal conditions are met. Mission completion rate is
calculated by averaging m across all the missions.

• Average number of robot actions (NRA). To measure
the efficiency of task completion, we also record the num-
ber of actions taken by the agent to complete each mission.
Average number of robot actions is calculated by averag-
ing the number of actions across all the missions.

6.1.2. VISION MODEL EVALUATION

The Neural-Symbolic model is composed of a separate vi-
sual component that performs instance level segmentation
of the first party view and/or surrounding images of the
agent. We evaluate the instance segmentation model using
the standard COCO evaluation metric, the Mean Average
Precision (mAP). The mAP metric is calculated by averag-
ing the precision at Intersection over Union (IoU) thresholds
ranging from 0.5 to 0.95 in steps of 0.05. The score of the
predicted instance class is not taken into consideration, and
instead a cap is applied on the number of maximum detec-
tions per image (chosen to be a 100). To be able to choose
an operating point for our end-to-end model and also tune
for recall, in addition to the standard COCO mAP metric,
we also provide a score and iou thresholded precision metric,
which we call t-mAP. This is calculated by thresholding the
output instance class scores at [0.05, 0.1, 0.3, 0.5, 0.7], and
thresholding the IoUs at [0.1, 0.3, 0.4, 0.5, 0.75, 0.8] for
all 30 (score, IoU) combinations and then averaging them.
We present both metrics for all objects, as well as metrics
categorized for small, medium and large objects. The results
are provided in Table 3a.

6.2. Results and Analysis

The overall mission completion results from the baseline
models are displayed in Table 3b and Table 3c. Both models
are evaluated with a cap of 50 maximum allowed steps per
mission, and a maximum of 10 failed steps per mission,
beyond which if the mission goal is not completed, the
agent stops execution leaving the goal incomplete. Below,
we analyze the results for both the models and provide
insights into the model performances.

6.2.1. NEURAL-SYMBOLIC MODEL

Overall, adding QA leads to slight improvement of per-
formance for the Neural-Symbolic model. Looking at the
MSR for each type of mission (Table 3c), we notice that
the model performs well for missions with short horizons
(e.g. scanObject, toggleDevice). As an ablation study, we
also evaluate the multi-modal transformer on the validation
set by giving it the ground-truth visual observations at each
time step. As a result, the model can correctly predict all
the actions and objects, including the rotation actions, for
71.3% of the missions without questions and answers, and
76.9% with questions and answers. These quantitative re-
sults demonstrate that the bottleneck for the neural-symbolic
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Category Area (px2) COCO mAP t-mAP
Small 0 - 1296 37.63 91.49
Medium 1296 - 9216 60.41 92.15
Large 9216 - 90000 64.72 84.91
Overall 0 - 90000 46.03 89.5

Table 3a. Image segmentation results for the vision model used in the neural-symbolic approach. We present the metrics for small,
medium and large objects.

Method MSR (%) NRA
Neural-Symbolic 18.19 11.82
VL-model 22.80 12.73
Neural-Symbolic (with QA) 19.32 11.73
VL-model (with QA) 34.20 8.82

Table 3b. Experimental results for agent evaluation on validation dataset for both baseline methods. MSR stands for mission success rate.
NRA stands for average number of robot actions.

Mission NS (%) NS (%) VL (%) VL (%)
Type w/o QA w/ QA w/o QA w/ QA
breakObject 0.00 0.00 21.11 41.11
clean&deliver 12.64 13.79 13.79 19.10
color&deliver 0.00 0.00 0.00 0.00
fill&deliver 14.58 18.75 10.41 22.91
freeze&deliver 33.33 25.00 0.00 8.33
heat&deliver 5.13 5.13 10.25 28.20
insertInDevice 14.12 14.69 14.68 20.90
pickup&deliver 9.47 12.63 15.43 27.36
pourContainer 14.53 16.24 16.23 30.76
repair&deliver 11.11 12.96 9.25 29.62
scanObject 41.44 41.44 37.83 56.75
toggleDevice 57.14 56.19 81.90 81.90

Table 3c. MSR of the Neural-Symbolic (NS) and Vision Language (VL) models based on mission type. The results are for with QA and
without QA. Table 3. Baseline Model Evaluation Results

model is not the action and object prediction. In fact, since
it is common that there are multiple objects of the same
class in a room, even if the transformer model correctly
predicts the object class and the vision model correctly pre-
dicts all the object masks of that class in the image, since
we use heuristics to do visual grounding, the model can
still make mistakes selecting the mask for the right object
instance (Figure 8). This can also explain why the improve-
ment with QA is limited, since the language instructions do
not participate in the grounding once the action and object
are predicted. In addition, the vision model has difficulties
detecting some small objects, such as carrot, coffee cup,
hammer and screw driver, which also causes some errors.
Some objects look similar but belong to different classes,
such as the time machine and the microwave, and the ta-
ble and book shelf, making it hard for the vision model to
distinguish.

6.2.2. VISION LANGUAGE MODEL

The VL model shows a 11.40% absolute improvement in
MSR when trained and evaluated with QA compared to
training and evaluating without QA. The agent is also able to
complete the missions more efficiently with QA, by showing
an improvement of 3.91 in average number of steps for
mission completion. This demonstrates that asking the right
questions improves task execution efficiency and accuracy.
The agent shows significant improvement in MSR for task
types for which the QA adds valuable information. For tasks
like toggling which few objects can afford, the instructions
tend to already be descriptive enough in natural language
("Turn on the red computer", "Press the blue button"), which
explains why adding QA shows no improvement. For all
other task types which involve numerous objects, the QAs
provide crucial additional information that is not naturally
provided with the instruction, thus leading to significant
performance improvement. From analysis, the color &
deliver missions are prone to failure because of difficulty in
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Figure 8. There are two tables in this image, a blue table on the left
and a green one on the right, leading to challenging disambiguation
tasks for the agent if not guided adequately.

disambiguating the receptacle of delivery.

While the VL model demonstrates improved performance
using an end-to-end method that generates actions and
masks simultaneously, we identify key insights, sources
of errors and failure points of the end-to-end architecture by
analyzing the robot trajectory for 25 missions:

1. Some missions fail because of failure to visually ground
the natural language instruction to a single object in-
stance for interaction in the case of multiple instance
candidates. E.g. in Figure 8, there are two desks - blue
on the left and green on the right. If the natural lan-
guage instruction is not descriptive enough, the model
fails to visually ground the desk of interest. On anal-
ysis, we notice that in the <x>&deliver mission type,
the agent is often able to complete the <x> goal and
fails at the deliver goal because of ambiguity in language
("The desk is right in front of you with the monitor on
it"), or model visual perception failures to disambiguate
between multiple instances of the same object.

2. Sometimes, if the agent veers off its path due to a wrong
prediction (e.g. if it goes to a wrong room), the subse-
quent instructions to find an object in the room steers
the agent down a path to infinitely rotate about its posi-
tion to try finding the object ,i.e., the agent is trying to
respond to the next instruction that assumes successful
attainment of the correct previous state. This can poten-
tially be solved by better error correction mechanisms
in the model to identify such loopy states and exit them
to explore other options in the trajectory, or to execute
a strategy to backtrack to previous instructions. Since
the current baseline models use the readily available an-
swers in the dataset, this can also be improved in models
that are designed to ask questions based on its real-time
current visual observations.

3. Since this is an end-to-end model, the language and

visual features are jointly encoded and trained end-to-
end from input language and images to output masks
and actions. Some errors arise because the model is
attending more to the visuals in front of it rather than the
language input. E.g. if the robot is standing very close to
a cabinet door, or a shelf with a coffee pot, even though
the language instruction was to "go to the laser cannon",
it will try to Open and Close the cabinet door, or Pickup
the coffee pot, respectively, which the model has learnt
from the data.

4. Some more sources of error distributed in the model
across all evaluation tasks include ambiguity in language,
inability to model long range task instructions like "turn
right, go to the breakroom, heat the bowl and place it on
the table" - which consists of at least 9 steps, inability to
detect masks for some very small objects, or for objects
too up close, and failure to distinguish between very
similar looking objects (like Laser Cannon and Freeze
Ray). These are common issues between the Neural-
Symbolic and the VL models.

5. We also did an ablation study by training only the mask
prediction head and using the ground truth action pre-
dictions. Evaluating this model on the validation dataset
yields a MSR of 71.89%. This simulates the scenario
when the perfect actions are predicted to situate the robot
in a position to predict a mask for an interactable object,
thus evaluating only object detection and visual ground-
ing of the natural language instruction. This result shows
the model’s difficulties in finding object locations in an
end-to-end fashion, requiring the incorporation of bet-
ter path planning modules that learn from multi-modal
inputs.

7. Conclusion and Future Work
In this paper, we introduce Alexa Arena, a user-centric Em-
bodied AI platform. Alexa Arena features user-friendly
graphics, animations and control mechanisms to facilitate
user-centric EAI research at scale. Presented as games to
general users, missions in Alexa Arena involve a variety
of meticulously designed object categories and interaction
actions, opening up new possibilities for data collection,
EAI development and evaluation. We present one use case
of the platform on dialogue-guided task completion, and
also release a hybrid dataset with challenging problems in
task planning, visual grounding and natural language under-
standing. We provide baseline results in a dialog augmented
setting for two model architectures. In future work, we aim
to incorporate a model-based questioning mechanism to
which an oracle provides relevant answers during task exe-
cution, leading to more accurate and dynamic models that
use real-time contextual information for grounding. Another
direction is to enable the human and the robot to control dif-
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ferent embodied agents and create more scenarios for HRI.
We also plan to release more missions and scenes in future
updates to incorporate other exciting elements in Arena, like
gravity flippers, hazards and other blocker objects in the
agent’s execution path, opening up avenues for innovation
in multi-modal reasoning and compositional task planning.
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A. Appendix
A.1. Data Collection

A.1.1. HUMAN LANGUAGE ANNOTATION

To collect natural language dialogue for the missions, we
design a two-stage data annotation process on Amazon Me-
chanical Turk (AMT). The first stage is for collecting in-
structions and the second is for questions and answers. In
both stages, the annotator watches a video containing an
expert demonstration for the mission and provide the anno-
tations by text data or multiple choice questions.

In the first stage, annotators are told to write instructions
to tell a “smart robot” how to accomplish a task. During
the process, an annotator first watches the video of the
ground-truth robot actions, then writes instructions for each
highlighted video segments. Fig. 9a shows the user interface
for collecting language instructions.

After all the instructions are collected, we start the second
stage of annotation, where the annotators are asked to raise
questions to help them complete the task, as if they are
controlling the robot to follow the instructions. They also
need to answer their own questions. Fig. 9b shows the
interface for collecting questions and answers. Here are the
steps annotators need to follow:

1. Annotator watches a video: A 10 second video clip is
played till the beginning of a sub-task, and the respective
instruction is shown on screen. The video clip helps the
human annotator to understand the initial environment
states.

2. Annotator selects a question: The annotator selects one
pertinent question that they think may help task comple-
tion. The questions are generated from several predefined
templates. Annotators also have the options to type in
their own questions.

3. Annotator answers the question: The same annotator
watches the video segment of an expert agent working
on the sub-task specified by the language instruction, and
then providing the answer to the question in text.

4. Annotator indicates whether asking the question is nec-
essary: In some cases, the instruction and the visual
context is already clear enough, and asking a question is
not necessary.

To ensure the annotation quality, in practice, we collected
3000 data sessions for the first data collection stage. Then
we asked additional annotators to identify annotation errors
and try to correct them, e.g. erroneous language instructions,
grammatical errors, misalignment between instructions with
robot actions, etc. For data sessions where most collected

annotations do not make sense and are not worth fixing,
the additional annotators are asked to simply ignore them.
As a result, 20.3% sessions are ignored and 35.7% instruc-
tions are corrected. From the data verification results, we
identified a subset of AMT workers (around 300 workers)
who generated high-quality data, and used them for our
subsequent data collection process.

A.1.2. QUESTIONS GENERATION

Similar to (Gao et al., 2022), the questions choices in the
second stage of annotation are generated using predefined
templates. Given an instruction, we extract nouns and insert
them into the templates to construct questions. The nouns
extracted correspond to query objects that the agent need
more information to complete the mission.

In particular, we consider three types of questions, related
to the location and appearance of the query object o, and the
relative direction between the agent and the target position.
The templates for each question are defined below:

1. Location: where is o?

2. Appearance: what does o look like?

3. Direction: which direction should I turn to?

4. Reference: which o are you referring to?

Figure 10 and Figure 11 shows the statistics of the trajectory
dataset.

A.1.3. ORACLE ANSWERS

Human language has a lot of variety and complexity, and
thus can be quite challenging for the agent to understand.
Alternatively, we can provide templated language to the
agent as a starting point for language understanding. To this
end, in addition to asking human annotators to answer the
questions, we also build an oracle that can answer the ques-
tions by extracting information from the simulator metadata:
(i) To answer the location question, we compute the direc-
tion of the object relative to the agent and the viewpoint that
is closest to the object in the room. To help detect small
objects, if the object is held by a container, we also provide
the information of the container and other objects that are
also held by the same container as landmarks; (ii) To answer
the appearance question, we directly extract object shape,
color and material information from the simulator metadata;
(iii) For direction question, we compare the agent’s location
at the end of the sub-task with its initial location to provide
answers for the agent’s moving direction. After we have
the necessary information, we use language templates to
generate the answers. Example templates include:
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Mission Type Train Valid
breakObject 196 30
clean&deliver 161 29
color&deliver 29 4
fill&deliver 108 16
freeze&deliver 76 8
heat&deliver 42 13
insertInDevice 381 59
pickup&deliver 669 95
pour 265 39
repair&deliver 131 18
scanObject 324 37
toggleDevice 279 35

Table 4a. Distributions of mission types across training and valida-
tion splits of the trajectory dataset.

1. Location: The o is to your [direction] in/on the [con-
tainer] next to the [landmark] in the [room]. It is closest
to [viewpoint].

2. Appearance: The o is [shape] and of [color]. It is made
of [material].

3. Direction: You should turn [direction] / You don’t need
to move.

A.1.4. VISION DATA GENERATION

The image data collection strategy was simple and straight-
forward - the goal was to collect data spanning all possible
objects spawnable in Arena from different distances, views
and perspectives of the said object. This was done by fol-
lowing the below steps:

1. Initialize a game mission using the CDF file with re-
quired objects.

2. After initialization, we issue commands to navigate to
all the different objects present in the scene using the
primitive navigation actions and capture the first party
view.

3. We then capture images by issuing interactive commands
as per the affordances of that object at the time of capture,
which are retrieved from the game metadata response.

4. We also capture additional perspectives by taking a ran-
dom walk around the object using basic trigonometry.

We repeat the above steps with various missions and objects
with lights on and off for different lighting conditions. All
the commands, object states and their locations in the scene,
along with a host of other useful information are logged in
metadata files. We provide the RGB color images, segmen-
tation maps and associated metadata for each image. The
statistics of the dataset are illustrated in Fig. 12b.

Dataset Validation. To validate the quality of the ground
truth segmentation and bounding box annotations for model-
ing, we collect 1245 images containing instances spanning
all object classes and annotate them with bounding boxes
and associated class names. Since Arena features fantastical
objects (like Gravity Flippers), we also provide example
images for each object class to familiarize the annotator
with the appearance of all classes. The images are then
validated by annotators according to the class names into
one of the following 4 categories (with results provided in
parenthesis):

1. Yes, the object is fully contained within the bounding
box (79.7%)

2. Yes, the object is partially contained within the bound-
ing box (16.3%)

3. No, the object is not within the bounding box, but is in
the image (1.6%)

4. The object is not in the image (2.4%)

For category 2, the objects are present only partially in the
image because they are only partially visible in the robot’s
egocentric view at the time of image collection. Overall re-
sults show that the ground truth segmentation and bounding
box annotations have very little noise and are of high quality
to be used for training and evaluation of visual perception
models.

A.2. User Study on Dialog-guided Task Completion

To demonstrate the potential of Alexa Arena for real-time
user interactions, we conduct a user study for dialog-guided
task completion. The study is presented as games to the
users. In the study, we run Alexa Arena on Amazon Echo
devices. By talking to the devices, users can use verbal
commands to control the agent in the virtual environment.

A.2.1. EXPERIMENT DESIGN

Participants. We recruited 31 non-expert participants.

Metrics. Overall, we look at the task performance and
user satisfaction. We use the mission success rate for the
task performance metric. For user satisfaction, we collect
response on the overall satisfaction toward the game, as
well as whether users believe the game is easy to learn, easy
to play, fun to play and whether they would like to play it
again. We use a 5-point likert scale for overall satisfaction,
and 7-point likert scale for the other questions.

Tutorial. Before working on tasks in the regular game,
each participants is asked to complete a tutorial, which is
designed to help them get familiar with the game mecha-
nism. In the tutorial, the participant is asked to complete a
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tutorial mission, making a bowl of cereal, by giving verbal
commands to the agent. For the first few required actions,
such as picking up the cereal and pouring the cereal into
the bowl, participants are given verbal instructions on the
utterance they can use to execute the action. For the later
actions, such as pouring the milk into the bowl, the partici-
pants are not given instructions on the utterance until they
make mistakes.

Tasks. Each participant is asked to complete three regular
missions:

1. The first mission requires the agent to find the control
panel and insert it into the laser. The agent also needs
to turn on the red monitor that controls the laser to fire
the laser canon. Note that there is also a blue monitor in
the room which controls the freeze ray. It should not be
used for this mission.

2. The second mission requires the agent to pick up the
bowl in the break room and place it on the color changer.
After that, the agent needs to push the red button on the
color changer to change the color of the bowl to red.
Note that there are also green and blue buttons on the
color changer, and the agent should not push them to
complete this mission.

3. The third mission requires the agent to place a can of
soda on a blue shelf which server as a target for the freeze
ray. The robot can then toggle the blue monitor to fire
the freeze ray and make ice cold soda.

Procedure. After entering the game, the user is asked to
first complete the tutorial mission to get familiar with the
game, before working on the regular missions. The order
of the three regular missions are randomized to avoid order
effect. The user can choose to skip the mission if they
encounter any issues. During the game, users can check the
sub-goals of the mission by looking at the text on the top
left corner of the screen (Figure 3). The user can also read
the sticky notes in the room to get some hints on how to
complete the task. Sticky notes are displayed as flickering
green dots in the minimap. After the interaction, the user is
asked to complete a questionnaire for evaluation.

A.2.2. RESULTS AND ANALYSIS

Out of the 31 participants, 15 participants are able to com-
plete all three missions and 15 can complete two missions.
Only 1 participant finishes one mission. This leads to an
average mission success rate of 81.72%.

Figure 13 shows the results of the user study. In general,
most users are satisfied with the game (M = 4.03, SD =
0.93) (Figure 13a). For game perception (Figure 13b), most
users agree that the game is easy to learn (M = 6.10, SD =

0.73), easy to play (M = 5.65, SD = 1.23) and fun to
play (M = 5.26, SD = 1.68). As a result, 77.42% of the
participants would consider playing the game again.

Looking at the free-form feedback, most participants like
the game. We see comments like "It is first game playing
on Alexa and I really loved the game.", "I thought the game
was fun and figuring out game play was easy.", and "I think
it has a good start. I like the idea of reaching some goals
via voice commands." For improvement, users would like
to see better language understanding, reduced game latency
and more guidance in the tutorial.

These results show that the Alexa Arena platform has the
potential to reach general human users by creating missions
as games, opening up the possibility for large-scale HRI
data collection, system development and evaluation with
humans in the loop.

B. Layouts
Alexa Arena contains 10 large game-ready interative multi-
room layouts. Each layout features an office-like environ-
ment with modular design, allowing the contents within
rooms to be rearranged and repositioned. The layouts were
hand designed to be visually different and aesthetically in-
teresting. The office setting allows both mundane and fan-
tastical interactive elements: users would be accustomed to
seeing everyday objects in more conventional rooms (and
would know instinctively how to interact with them), but
entering rooms clearly labeled as "labs" they would expect
to find futuristic devices and prototype machines that would
require experimentation to discover their function. As a
result of the above bipolar content, we are able to create
game missions with imaginative situations sitting alongside
normal everyday objects. The layouts in Arena are large:
on average, each house has 190 square meters of navigable
area, which is significantly larger than the scenes in other
EAI platforms (Figure 14). Figure 15 shows the top down
images of 4 houses in Alexa Arena.
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(a) User interface for collecting human instructions. Annotators watch the expert demonstrations and write down
instructions to guide the robot.

(b) User interface for collecting questions and answers. Annotators input their questions and answers to help the
robot complete the mission.

Figure 9. User interface for data collection.
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(a) Frequencies of action types. (b) Steps in expert demonstrations. (c) Length of human utterances.

Figure 10. Statistics of the training split of the trajectory dataset.

(a) Frequencies of action types. (b) Steps in expert demonstrations. (c) Length of human utterances.

Figure 11. Statistics of the validation split of the trajectory dataset.
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Figure 12. Vision dataset statistics

(a) Overall satisfaction of the game, measured by a 5-point likert
scale. 5 corresponds to "very satisfied" and 1 is "very dissatisfied".
The orange line shows the median value.

(b) User perception towards the game, measured by a 7-point
likert scale. 7 corresponds to "strongly agree" and 1 is "strongly
disagree". The orange line shows the median value.

Figure 13. User study results
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Figure 14. Bar plot of the navigable areas for Alexa Arena, comparing to ArchitecTHOR, AI2-iTHOR, RoboTHOR and ProcTHOR.

(a) (b)

(c) (d)

Figure 15. Top-down images of 4 multi-room game-ready layouts in Alexa Arena.


