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Abstract

Collaboration is a cornerstone of society. In the real world,
human teammates make use of multi-sensory data to tackle
challenging tasks in ever-changing environments. It is essen-
tial for embodied agents collaborating in visually-rich envi-
ronments replete with dynamic interactions to understand
multi-modal observations and task specifications. To eval-
uate the performance of generalizable multi-modal collab-
orative agents, we present TeamCraft, a multi-modal multi-
agent benchmark built on top of the open-world video game
Minecraft. The benchmark features 55,000 task variants
specified by multi-modal prompts, procedurally-generated
expert demonstrations for imitation learning, and carefully
designed protocols to evaluate model generalization capa-
bilities. We also perform extensive analyses to better under-
stand the limitations and strengths of existing approaches.
Our results indicate that existing models continue to face
significant challenges in generalizing to novel goals, scenes,
and unseen numbers of agents. These findings underscore
the need for further research in this area. The TeamCraft
platform and dataset are publicly available at
https://github.com/teamcraft-bench/teamcraft

1. Introduction

Developing collaborative skills is essential for embodied
agents, as collaboration is a fundamental aspect of human
intelligence [49]. In the AI community, multi-agent collabo-
ration is frequently studied using grid-world environments
[10, 17, 26, 31, 42, 44, 50, 52, 60, 64]. However, agents
in these environments lack multi-modal understanding. By
contrast, learning within visually-rich environments enables
agents to develop useful representations of multi-agent dy-
namics [7, 20], as vision facilitates implicit communication,
coordination, and collaborative execution [21, 22].

† This work does not relate to the author’s position at Amazon.

Learning vision-based, multi-task, multi-agent systems
is a challenging objective that presents several difficulties.
These systems must develop detailed scene understanding to
handle the diverse visual appearances of scenes. The com-
plexity is further heightened by the numerous combinations
of task configurations, such as object spatial arrangements,
goal configurations, arbitrary numbers of agents, and hetero-
geneous agent capabilities. Consequently, it is essential for
multi-agent systems to acquire generalizable skills that can
be effectively transferred across different settings.

An important step in addressing these challenges is to
develop simulation systems that support multi-modal multi-
agent learning. Recent advances in simulated environments
have significantly facilitated progress in embodied vision-
based systems [7, 9, 21, 43, 62]. Despite notable progress,
these systems have several limitations: (1) many of them
target one or two-agent scenarios [22, 37, 57], (2) they are
often limited to indoor settings with a narrow range of tasks
[44, 66], and (3) the task specifications are generally purely
in text [30, 37], making it hard to specify subtle task differ-
ences accurately and efficiently.

To drive progress in this area, we have developed a com-
prehensive benchmark, named TeamCraft , that features pro-
cedurally generated large-scale datasets specifically designed
for multi-modal multi-agent systems. This benchmark uti-
lizes the widely acclaimed open-world video game Minecraft
as an experimental platform to engage with the complex dy-
namics of multi-modal multi-agent interactions. Inspired by
the work of [24], we also leverage multi-modal prompts as
task specifications to guide agent interactions, as language
often fails to effectively convey spatial information [4]. Our
benchmark offers rich visual backgrounds, diverse object
categories, complex crafting sequences, and varying task dy-
namics. These features enable systematic exploration of out-
of-distribution generalization challenges for multi-modal,
multi-task, multi-agent systems at scale. In particular, our
benchmark evaluates a model’s ability to generalize to novel
goal configurations, unseen number of agents, novel agent ca-
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Table 1. Comparison with other benchmarks. TeamCraft features visual observation for multi-agent control with widely-varied tasks
specified by multi-modal prompts, targeting various types of generalization essential for multi-agent teaming. MM Spec.: multi-modal task
specification. Observation: V for visual observation and S for state-based observation. MA: multi-agent control, C for centralized and D
for decentralized. Interaction: object interaction. Tool: tool use. Generalization: types of generalization targeted, E for generalization on
novel environments or scenes, G for novel goals, A for novel numbers of agents. # Variants: number of task variants involved.

Benchmark MM Spec. 3D Observation MA Interaction Tool Generalization # Agents # Variants # Demonstrations

ALFRED [47] ✗ ✓ V ✗ ✓ ✓ E 1 2,600+ 8,000+
FurnMove [21] ✗ ✓ V CD ✓ ✗ E 2 30 ✗
Marlo [43] ✗ ✓ V D ✓ ✗ ✗ 4+ 14 ✗
MineDojo [11] ✗ ✓ V ✗ ✓ ✓ EG 1 3,000+ 740,000+
MindAgent [17] ✗ ✓ VS C ✓ ✓ ✗ 4+ 39 ✗
Neural MMO 2.0 [51] ✗ ✗ S CD ✓ ✓ EGA 128+ 25+ ✗
Overcooked-AI [5] ✗ ✗ VS C ✓ ✓ ✗ 2 5 80
PARTNR [6] ✗ ✓ VS CD ✓ ✓ E 2 100,000+ 100,000+
RoCoBench [37] ✗ ✓ S CD ✓ ✓ G 2 6 ✗
VIMA-Bench [24] ✓ ✓ V ✗ ✓ ✓ EG 1 1,000+ 600,000+
Watch&Help [44] ✗ ✓ S CD ✓ ✓ EG 2 1,200+ 6,300+

TeamCraft ✓ ✓ VS CD ✓ ✓ EGA 4+ 55,000+ 55,000+

pabilities, and new types of visual backgrounds. To evaluate
existing techniques using our benchmark, we have designed
several baseline models to work within the framework and
compare their performance. Our results highlight that cur-
rent approaches to vision-conditioned collaboration and task
planning encounter significant challenges when tested within
TeamCraft’s complex and dynamic environment, especially
when it comes to generalizations.

In summary, the main contributions of this paper are:
1. TeamCraft , a new multi-modal multi-agent benchmark

with its associated large-scale dataset encompassing com-
plex tasks challenging multi-agent systems in a wide
variety of generalization scenarios.

2. Extensive experiments and analyses on state-of-the-
art multi-modal multi-agent models, uncovering their
strengths and weaknesses to inform and inspire future
research.

3. To ensure reproducibility and encourage future works
from the community, we open source the entire platform,
its training and evaluation code, and release the model
checkpoints and training data at
https://github.com/teamcraft-bench/teamcraft

2. Related work

2.1. Platforms for Multi-Agent Systems

The recent success of multi-agent reinforcement learning
(MARL) methods [32–34, 61] has attracted attention, as
these methods explore cooperation and competence behav-
iors among agents. However, many of the methods are eval-
uated in simplified 2D environments [5, 26, 39, 52, 55]. Re-
cent work on embodied multi-agent benchmarks has consid-
ered more realistic tasks and environments [6, 15, 29, 30, 42],
but it often relies on certain privileged sensor information of

the environment [44, 45, 65]. Additionally, subject to envi-
ronmental constraints, these works often have limited set of
tasks [22, 54] related to navigation and simple interactions
such as object rearrangement [53]. By comparison, Team-
Craft is based on Minecraft, a three-dimensional, visually
rich open-world realm characterized by procedurally gener-
ated landscapes and versatile game mechanics supporting
an extensive spectrum of object interactions, providing rich
activities ripe for intricate collaborations.

2.2. Embodied Language-Guided Benchmarks

Several researchers have looked at the problem of using
natural language as the interface between embodied agents,
either in the form of task specifications [16, 47, 48, 67],
question answering [8, 18, 35, 36], instruction following
[2, 12, 13, 23, 40, 41, 56], or as means of task coordination
[27, 37]. VIMA-Bench [24] builds on previous efforts in
language-guided robotic manipulation [38, 46, 63] and uses
multi-modal prompts as uniform task specifications for ob-
ject manipulation. TeamCraft extends multi-modal prompts
to the multi-agent domain and uses them to specify a wide
variety of collaborative tasks that require object interaction
and navigation.

2.3. Benchmarks Based on Minecraft

Malmo [25] marks the advent of a Gym-style platform tai-
lored to Minecraft games. It paves the way for subsequent
single-agent works such as MineRL [19], Voyager [57], and
MineDojo [11]. Marlo [43] extends Malmo to multi-agent
scenarios, but the small number of task variations limit gen-
eralizations. Similar to our work, MindAgent [17] and
VillagerBench [10] focus on multi-agent collaboration in
a multi-task setting. However, both of these use purely
state-based observations, while TeamCraft tackles the more
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Figure 1. The TeamCraft platform consists of three main com-
ponents: (1) a Minecraft server that hosts the game as an online
platform, (2) Mineflayer, which serves as the interface for con-
trolling agents in the server, and (3) a Gym-like environment that
provides RGB and inventory observations to the models, allowing
control of multiple agents through high-level actions.

challenging problem of learning to collaborate from multi-
modal perceptions. Table 1 compares TeamCraft with prior
benchmarks.

3. TeamCraft Benchmark
3.1. Problem Formulation
Assume that an embodied multi-agent system comprised
of N agents needs to complete a complex task involving
navigation and object manipulation. The task is specified in
a multi-modal prompt xL = {xl}Ll=1, which is a sequence
of interleaved language and image tokens with length L. At
time step t, each agent receives partial observation otn ∈ O
from the full observation space O. To complete the task,
each agent can choose to perform a high level action at ∈ A
from the full set of action A. The action can be further
decomposed into a sequence of low level control signals.

3.2. Simulation Environment
TeamCraft utilizes Minecraft as its foundational simulation
environment, offering a complex, open-world setting for
multi-agent interactions. With a Gym-like environment, it fa-
cilitates the execution of intricate multi-agent commands via
self-explanatory skills. Figure 1 illustrates the platform ar-
chitecture. High level skills from the model can be translated
into low level control signals via nested API calls through
Mineflayer1. After execution, visual observation of each
agent are rendered and provided as input to the model.

Multi-Modal Prompts: In our work, the multi-modal
prompt xL consisting of a language instruction interleaved
with a set of orthographic projection images (i.e., top, left,
and front views) for task specification. Depending on the
specific task, the images can specify either the initial states,
intermediate states or the goal states.

1https://github.com/PrismarineJS/mineflayer

Observation and Actions: To mimic real world settings
of embodied visual agent teaming, we use first-person view
RGB image and inventory information as the observation
on. The action space A involves high-level self-explanatory
skills such as obtainBlock to obtain a block and farmWork
to farm a crop. Most actions take three input parameters, in-
cluding (1) agent name such as bot1, as the action-executing
entity, (2) item name such as dirt, and (3) a 3D vector indicat-
ing the position of the target. There are 8 types of actions in
total. A complete list of actions are described in Appendix A.

3.3. Task Design
TeamCraft introduces a variety of complex and interactive
tasks that challenge the agents’ capabilities in planning, coor-
dination, and execution within a collaborative and dynamic
environment. Each task is designed to test different facets
of MA interaction, including role distribution, real-time
decision-making, and adaptability to changing environments.
Task examples are shown in Figure 2 and the corresponding
prompt examples are shown in Figure 3.

Building: Agents erect a structure based on a provided
orthographic view blueprint. Each agent possesses a unique
inventory of building blocks necessary for the construction.
Successful completion requires visual cognition to associate
blueprint components with inventory items, spatial reasoning
to reconstruct a 3D structure from 2D images and map it to
3D coordinates for action targets, and collaborative coordi-
nation with other agents to resolve action dependencies. For
example, an agent cannot place a floating block and should
wait for another agent to build the supporting block first.

Clearing: Agents are required to remove all blocks from
a specified area. Besides spatial understanding and aware-
ness of action dependencies, agents must employ appropriate
tools to break blocks, which vary in durability, thereby requir-
ing multiple interactions for complete removal. The use of
correct tools can dramatically reduce the time required to re-
move blocks. Thus agents must coordinate task assignments
to optimize block-breaking efficiency. Strategic coordination
is essential in this task as agents need to dynamically decide
which blocks to target based on their current tools, and assist
each other even without the optimal tools when necessary.

Farming: Agents sow and harvest crops on designated
farmland plots. They must monitor crop growth stages, from
newly planted to fully grown, and harvest only when crops
reach maturity. Efficient task completion requires spatial
reasoning to select appropriate farmland, visual cognition to
assess crop maturity, and continuous updating of farmland
states based on other agents’ actions. As the available farm-
land exceeds what is needed, understanding other agents’
actions to avoid redundancy, and dynamically allocating sub-
tasks based on positions, available seeds, and crop maturity

3
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SmeltingSmeltingFarmingFarmingClearingBuilding
desert_villegeice_on_waterswampvillagesnow_mountainvillageScenes

glassoak_woodobsidianhay_blockgold_blockcyan_concreteBase

smooth_quartz *2cooked_mutton *1wheat *4Potato *3Clean 3D buildingBuild 1x2x4 buildingGoal

[oak_planks, 
quartz_block]

[birch_planks, sheep]--[grass_block, dirt 
birch_log, bookshelf,]

[dirt, wool, fence
sandstone, sponge]

Object

232233Agent

[iron_pickaxe,
iron_axe]

[iron_pickaxe, 
iron_axe, iron_sword]

[wheat_seeds,
carrot, potato]

[carrot, 
beetroot]

[stone_axe, 
stone_sword]

[dirt, wool, fence, 
sponge,log, stone]

Inventory

Demonstration

Figure 2. We present example task configurations, as a combination of distinct biomes, playground base blocks, task goals, target blocks
materials and agent counts. Agents are initialized with unique inventories, which provide them with different capabilities to complete various
activities. A detailed distribution is provided in Appendix J.

SmeltingFarmingClearingBuilding

System 
Prompt Three bots need to craft 3 smooth 

sandstone. To craft, I need obtain 
‘sandstone’ with a pickaxe. Write 
actions for bot1, bot2, bot3 …

Two bots need to grow on the 
platform. The goal is to get 4 carrot. 
Write actions for bot1, bot2 based 
on given observation.

Three bots need to break everything 
on the platform. Write actions for 
bot1, bot2, bot3 based on given 
observation.

Three bots need to build a building 
on the platform. Write actions for 
bot1, bot2, bot3 based on given 
observation.

Language 
Instruction

First 
Person 
ViewObserv

ation bot1 has 1 beef,
bot2 has 1 iron_sword,
bot3 has 1 iron_shovel…

bot1 has 3 carrot,1 potato,
bot2 has 3 carrot, 2 beetroot…

bot1 has a stone_axe,
bot2 has a stone_pickaxe,
bot3 has a stone_sword…

bot1 has 5 bricks, 3 iron_ore,
bot2 has 2 sea_lantern,
bot3 has 1 brick…

Inventory
Information

putItem(bot1, 'sandstone', (0,0,-1)),
obtainBlock(bot2, (2,0,0)),
obtainBlock(bot3, (1,0,-3))

farmWork(bot1, (1,-1,1), sow, 'carrot')
farmWork(bot2, (-1,-1,-2), sow, 
'carrot')

mineBlock(bot1, (-1,0,1))
mineBlock(bot2, (-2,0,0))
mineBlock(bot3, (-1,1,1))

placeItem(bot1, 'bricks', (-1,0,-1))
placeItem(bot2, 'oak_planks', (0,0,0))
placeItem(bot3, 'iron_ore', (0,0,-1))

Action

Three 
Orthographic 
Views

Figure 3. Multi-modal prompts are provided for all tasks. The system prompt includes both the three orthographic views and specific
language instructions. Observations consist of first-person views from different agents, along with agent-specific information.

are essential. For example, some agents can sow while others
are harvesting, stop when the total yield meets the goal.

Smelting: Agents obtain processed items using furnaces
by gathering materials and coordinating actions. They col-
lect resources from the environment, by harvesting blocks
or killing mobs, or use existing inventory items to produce
goal items like cooked food or refined materials. Agents also
need to gather fuel before they can make use of furnaces.
Efficient task completion requires spatial understanding to
locate furnaces and resources, and coordinating actions with
inter-agent dependencies. For instance, if one agent is col-
lecting beef, others should focus on gathering fuel rather
than duplicating efforts. Working as a team to use limited
furnaces efficiently is crucial, rather than each agent inde-
pendently smelting their own goal item.

3.4. Centralized and Decentralized Agents
TeamCraft supports centralized and decentralized control.

Centralized Agents: The centralized model is given the
observational data of all agents, including the first-person

view, action history, and inventory information. Based on
these comprehensive data, the model generates the actions
for all agents simultaneously. This approach leverages the
full scope of information available in the environment to
coordinate and optimize the actions of all agents collectively.

Decentralized Agents: The decentralized models do not
receive information about other agents except for the initial
inventory of the team. Each model generates actions solely
for the individual agent based on its limited view. This set-
ting simulates a more realistic scenario where agents operate
independently with restricted information, focusing on their
actions absent of any centralized coordination.

3.5. Diversity
The tasks are complex and challenging, testing multi-agent
systems in diverse settings. Table 2 provides task statistics
and variants, with visual diversity detailed in Appendix C.

Object Diversity: More than 30 target object or resource
are used in tasks. Objects, such as a fence, an anvil, or a
stone block, have different shapes and textures. Farm crops
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have different visual appearances during growth stage. The
smelting task has resources with different appearances, such
as chickens or rabbits.

Inventory Diversity: Agent’s inventory might include es-
sential items mixed with non-essential ones (i.e., distractors),
realistically simulating scenarios where agents must choose
the right materials for specific tasks while managing inven-
tory constraints. Agents are also provided with random tools
for each task. Having the appropriate tools significantly en-
hances efficiency in tasks like clearing. For smelting, some
resources must be collect by agent with specific tools.

Scene Diversity: More than 10 scenes are included in the
tasks, covering biomes such as village, mountain, forest,
swamp, desert, etc. Tasks take place on grounds with diverse
textured bases such as glass, concrete, and quartz. Certain
tasks may involve additional complexity, including farmland
which are intermixed with non-plantable blocks.

Goal Diversity: Each task requires achieving a varying
number of goal targets. Building requires different blocks
placed into various shapes, categorized based on dimension-
alities, e.g., 2D (all blocks are at the same level) or 3D (some
blocks are on top of others). Farming requires various target
crops and yields. For the smelting task, the target object is
sampled from various food or processed items.

3.6. Tasks and Expert Demonstrations Generation
To create a rich learning environment and effective imita-
tion learning dataset, systematic scenario design and data
collection methods are employed, as follows:

Task Generation: Variables from a diversity pool, such as
agent counts, scenes, and goals, are sampled to establish task
configurations. Specifically, a solvable task is formulated by
rejection sampling of the essential task variables. "Solvable"
implies that the task can be completed within the Minecraft
world rules and is within the agents’ capabilities. For exam-
ple, in smelting tasks, fuel must either be available to collect
in the scene or directly accessible in the inventory.

Planner-Based Demonstrations Generation: Given the
task specifications, a planner assigns actions to agents at
every time step, utilizing privileged information of the envi-
ronment. Assume agent i performing action j, the planner
optimizes a cost function designed to minimize total task
completion time T , idle actions Ei, action dependencies D,
redundant actions U , and the cost cij for agent i performing
action j:

C = w1T+w2

N∑
i=1

Ei+w3D+w4

N∑
i=1

∑
j∈Ai

cij+w5U (1)

where w1, w2, w3, w4, and w5 are weighting coefficients.
Details of the weights are available in Appendix D.

Table 2. Task variants and dataset statistics

Building Clearing Farming Smelting

# Action Sequences 2 – 6 2 – 9 2 – 7 2 – 8
# Agents 2 – 3 2 – 3 2 – 3 2 – 3
# Tools – 1 – 4 – 1 – 4
# Scenes 6 5 4 5
# Base Types 10 11 9 11
# Furnaces – – – 1 – 2
# Target Block Types 19 16 3 13
# Target Block Counts 5 – 12 4 – 9 2 – 14 1 – 4
# Fuel Types – – – 12
# Resource Types – – – 20
# Dimensional Shapes 2 2 2 1
# Placement Shapes 7715 12724 13188 8885
# Total Demonstrations 14998 14641 14815 10803
# Test Set 50 50 50 50
# Generalization Set 200 200 150 200
# Generalization Conditions 4 4 3 4

As shown in Table 2, we generated 55,000 unique task
variants, each with one demonstration. A demonstration
consists of a multi-modal prompt as task specification, in-
cluding three orthographic view images representing task
initial states or goal states and the corresponding language in-
structions. At each time step, agent inventories, first-person
RGB observations and actions are recorded.

3.7. Test Set and Generalization Set

TeamCraft features a test set, where agents are initialized
with random position, orientation, and inventory. Other vari-
ables follow the same distribution as training. To evaluate
the model generalization, we further designed a generaliza-
tion set with hold-out elements excluded from training data.
In general, we withheld test cases involving four agents,
whereas the training data include only two or three agents.
We also introduced unseen scenes not present during train-
ing. In addition to these general hold-outs, we implemented
task-specific exclusions as following: 1) Building: novel
shapes and materials to build. We exclude 8 block place-
ment shapes, defining how target blocks are arranged on the
ground. These shapes varied in complexity, containing 5 to
12 blocks in both 2D and 3D configurations. Additionally,
we omitted 3 block materials appeared in clearing but not in
building. 2) Clearing: novel shapes and materials to clear.
We held out 6 block placement shapes with block counts
ranging from 4 to 9. We also excluded 3 block materials
present in building but absent in clearing. 3) Farming: novel
crops to farm and collect. 4) Smelting: novel number of fur-
naces and goal objects. We excluded 4 unseen goal objects
and introduced scenarios with novel number of furnaces in
the scene. As shown in Table 2, with 50 samples per task for
the test set and each generalization condition, our benchmark
contains a total of 950 test cases.
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placeItem(bot1, purple_wool, [-1,0,-1])
placeItem(bot2, iron_ore, [-1,0,1]) 
placeItem(bot3, sea_lantern, [-1,0,0])
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Language Instruction

Image Text Action

Bot1
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… … …

legend

* * *

* * *

placeItem(bot1, grass_block, [-1,1,1])
placeItem(bot2, grass_block, [-1,1,0]) 
placeItem(bot3, birch_log, [-1,1,-1])

*

Figure 4. The architecture of the TeamCraft-VLA model. Multi-modal task specifications combining three orthographic views images
of the task goal states and corresponding language instructions are encoded as initial input to the model. Agents inventories and visual
observations are further encoded in each step to generate actions for agents. For decentralized setting, the model only has access to one
agent’s information, exampled by Bot2: items associated with a * represent the fact that only the data associated with agent 2 are available.

4. Experiments
4.1. Baselines and Ablations
TeamCraft-VLA: We introduce TeamCraft-VLA (Vision-
Language-Action), a multi-modal vision-language action
model designed for multi-agent collaborations. As shown
in Figure 4, the model first encodes multi-modal prompts
specifying the task, then encodes the visual observations
and inventory information from agents during each time
step to generate actions. Following [28], the VLA model
architecture consisting of a CLIP encoder for images, a
projector to align the image features with language model.
We use CLIP ViT-L/14 as the visual encoder and a linear
projector for modality alignment. The model is trained on
the demonstration data for three epochs before convergence.

Proprietary VLA: We use GPT-4o as the proprietary
VLA. Specifically, we use similar prompt structures as the
centralized finetuned TeamCraft-VLA model, with addi-
tional task information in the initial system prompt to pro-
vide background knowledge of the task. The system prompt
contains recipes, input, output formats, all available blocks,
items, workspace limitations, and one successful rollout of
a similar task in the same task family. At the first step, we
additionally provide the first user prompt, where the model is
given a specific multi-modal task specification accompanied

by initial visual observations and inventory details of the
agents. Based on the system prompts and user prompts, the
model predicts the actions. As the interaction progresses
with subsequent prompts, the context is maintained and ex-
panded with the addition of prior responses and updated
visual data. Detailed prompts are available in Appendix H.

Grid-World Settings: In order to the understand the im-
pact of learning in multi-modal environment as opposed to
purely text-based or state-based environment, we perform an
ablation study by translating the TeamCraft environments
into a 3D grid-world. We retain the same prompt structure of
the training data used in the TeamCraft-VLA models, with
the main difference being that environmental information
(i.e. visual observations and three orthographic view images)
is now represented in text, describing the voxel coordinate
of each block, e.g. "brick is at (2,3,0), stone is at (2,3,1)...".
We fine-tuned a LLM in centralized setting with variance in
the dataset size (10%, 50%, and 100% of the total data) for
three epochs before convergence.

Ablations: We performed a total of 15 ablation studies,
varying in dataset sizes (10%, 50%, and 100% of the total
data), control settings (centralized and decentralized), exper-
iment settings (Multi-modal and Grid-World) and sizes of
the VLA model (7B and 13B).
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Figure 5. Subgoal success rate and task success rate across centralized, decentralized and grid-world settings. The leftmost column displays
the Test category, which shares similar data distribution as training. The Goal, Scene and Agents categories represent generalization tasks
involving unseen goals, scenes, and tasks involving four agents, respectively. Average performance is presented in the rightmost column.

4.2. Evaluation Metrics
We evaluated the performance of the methods based on three
key metrics: task success rate, subgoal success rate and
redundancy rate.

Subgoal Success Rate: This metric evaluates the effec-
tiveness of agents in completing tasks. Given M test cases,
each test case m has sgm subgoals, and agents complete sdm
subgoals. The subgoal success rate SGS is defined as

SGS =
1

M

M∑
m=1

sdm
sgm

(2)

Specifically, subgoals are designed based on the task require-
ments, i.e. the number of blocks to be built for building and
the number of target objects to be created for smelting.

Task Success Rate: This metric indicates the proportion of
test cases that the model can successfully complete from start
to finish. Specifically, the task success rate TS is defined as:

TS =
1

M

M∑
m=1

1
[
sdm = sgm

]
(3)

A higher success rate reflects the model’s ability to consis-
tently achieve the desired outcomes in various scenarios.

Redundancy Rate: This metric assesses whether multi-
ple agents are performing the same action at the same time,
which would lead to conflicts. Assume pm is the total num-
ber of actions for test case m and qm the number of conflicts

between agents, the redundancy rate RR is defined as:

RR =
1

M

M∑
m=1

qm
pm

(4)

A lower redundancy rate indicates better task allocation
among agents and a higher level of cooperative efficiency.

4.3. Evaluation Results
We evaluated the subgoal success rate and task success rate
of the models. As illustrated in Figure 5, our analysis and
findings are discussed below:

Success Rate: For both the 7B and 13B models, the sub-
goal success rate and task success rate fall short of optimal
performance. This is particularly evident in challenging
tasks such as smelting, with both subgoal and task success
rates below 40%. This highlights the inherent difficulty of
the designed tasks and underscores the current limitations of
VLA models in handling multi-step, sequentially dependent
processes.

Across Model Size: In Figure 5, we observe that as train-
ing data increased, the performance of the 7B model ap-
proaches that of the 13B model, especially when generaliz-
ing to novel goals and number of agents. This suggests that
scaling up model sizes blindly do not guarantee success.

Multi-Modal Environment vs. Grid-World: The perfor-
mance of the language model in the text-based Grid-World
significantly surpasses VLA models in multi-modal settings.
This suggests that state descriptions provided purely in text
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Figure 6. Task success rates of centralized and decentralized VLA model and GPT-4o. Models are trained with the full data except GPT-4o.
TeamCraft-VLA-7B-Cen outperforms the other two methods by a significant margin across nearly all variants.

format are less challenging for models than multi-modal
inputs, underscoring a notable gap in current VLA models’
ability to effectively interpret visual information. For the lan-
guage model, we observe a surprising trend in the Goal and
Agents splits: training with more data lower the success rate.
This decline suggests that the generalization capacity for
certain task categories actually diminishes as training goes
on. One possible cause is when exposed to more data, the
model relies more heavily on patterns specific to the training
examples, limiting its ability to adapt to unseen scenarios.

Generalization Splits: For VLA models, performance
generally drops when models transfer to novel generaliza-
tion splits, especially in the Goal and Agents categories. The
Scene split primarily tests image understanding, while the
Goal and Agents splits emphasize task planning and alloca-
tion, critical factors in multi-agent systems. This indicates
that VLA models still struggle with planning for unseen
goals and adapting to variable numbers of agents.

Scaling Law: As training data increases, we observe sig-
nificant improvements in both subgoal and task success rates
across centralized and decentralized settings, underscoring
the importance of dataset size for achieving better perfor-
mance. The improvement is particularly pronounced when
the training data increases from 10% to 50% in centralized
settings. This suggests that while more data generally leads
to better performance, gains diminish beyond a certain point,
especially in the decentralized setting.

Centralized vs. Decentralized: Figure 6 compares cen-
tralized and decentralized settings in terms of subgoal and
task success rates across all task variants. Centralized tasks
exhibit significantly better performance across nearly all
variants, highlighting the challenge of effective planning
with partial information. This finding also demonstrates that
multi-agent systems cannot be simplistically modeled as sin-
gle agents interacting with environments containing other
agents. In decentralized settings, the absence of comprehen-
sive agent modeling is particularly impactful, especially for

Table 3. Comparison of TeamCraft-VLA model redundancy rates.

Test Goal Scene Agents Average

TeamCraft-VLA-7B-Cen 0.01 0.02 0.01 0.01 0.01
TeamCraft-VLA-7B-Dec 0.13 0.12 0.13 0.24 0.15

cooperation-intensive tasks like "Farming" or "Building".

Redundancy Rate: Table 3 compares redundancy rates
between centralized and decentralized settings. Our results
show that decentralized agents exhibit significantly higher
redundancy rates than centralized agents, indicating reduced
efficiency in task planning and allocation. This inefficiency
becomes even more pronounced as the number of agents
increases, creating greater challenges for effective task allo-
cation. In decentralized settings, the absence of centralized
control complicates the avoidance of redundant work, as
each agent must independently infer the intentions of others
to prevent duplication. By contrast, a centralized controller
can efficiently assign distinct tasks to each agent, minimiz-
ing overlap and enhancing overall efficiency. These findings
suggest that VLA models lacking explicit mechanisms to
understand or infer the actions of other agents, highlighting
a critical need for improved inter-agent communication and
awareness within decentralized systems.

GPT-4o Result: We evaluate GPT-4o on in a one-shot
prompt learning setup and it failed on almost all test cases. A
detailed analysis reveals that GPT-4o struggles with mapping
block coordinates based on visual inputs, demonstrate a lack
of 3D spatial reasoning needed for accurate task execution.
This shortcoming severely impacts performance, since most
of our tasks require precise spatial orientation and alignment.
For example, in building task, a brick should be placed
at (8,0,8), while the output of model is "placeItem(bot1,
’bricks’, (7,0,9))" which leads to wrong execution.
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4.4. Qualitative Analysis
We performed a qualitative analysis across three generaliza-
tion splits, examining how models handle novel goals, new
scenes, and novel number of agent:

Goals: When faced with novel goals, the models strug-
gle to generalize beyond familiar items and often fail to
adapt to specific, unseen objectives. For example, in the
"farming" task, if instructed to farm beetroot—a crop not
encountered in training—the model might generate a com-
mand like "farm_work(bot1, (9,3,3), ’sow’, ’beef’)," causing
Bot1 to sow "beef", which appears in the training data for
"smelting". This behavior reflects the model’s reliance on
similar, previously seen items in the training data and reveals
its limited ability to infer new tasks based solely on partial
similarity.

Object State Recognition: VLA models show strong gen-
eralization to new scenes, performing comparably to the Test
set. However, errors often arise in recognizing object states.
For example, in "farming" tasks, agents may harvest crops
before they are fully grown due to challenges in identify-
ing crop states, especially when encountering new scenes.
This highlights limitations in precise object state recognition
when operating within unseen environments.

Agents: For generalization to four agents, models fre-
quently ignoring the fourth agent and assigning tasks in-
efficiently only to two or three agents. For example, for
the building task, the model predicts the action sequences
{"placeItem(bot1, ’birch_log’, (4,4,7))", "placeItem(bot2,
’sandstone’, (4,4,6))", "placeItem(bot3, ’dirt’, (3,4,6))"} with
the fourth agent overlooked, reducing productivity and some-
times preventing timely task completion. This limitation be-
comes especially evident in tasks requiring full coordination,
such as "Building." In these tasks, each of the four agents
holds unique blocks in their inventory, and all agents must
contribute their specific block to a shared platform to com-
plete the structure. The model’s inability to distribute tasks
effectively across all agents often leads to incomplete struc-

tures or outright task failure. This highlights a significant
limitation in precise coordination and workload distribution
necessary for successful multi-agent collaboration.

5. Conclusions
We have presented TeamCraft , a benchmark for multi-modal
multi-agent collaborative task planning in Minecraft. The
benchmark consists of challenging collaborative tasks and
evaluation splits designed to systematically test multi-modal
agents across novel goal configurations, unseen numbers
of agents, and unseen scenes. We conducted extensive ex-
periments and analyses to pinpoint the limitations of the
current models and identified promising research directions
for collaborative multi-modal agents.

5.1. Limitations and Future Work
1. Given the limited capacity of existing multi-agent VLA

models, TeamCraft relies on MineFlayer as an oracle
controller to execute skills predicted by the models. En-
abling VLA models to directly control multiple agents
via low-level control [58, 59] would be important future
research.

2. We have trained the models using procedurally generated
multi-agent demonstration data. Learning from noisy but
more diverse real-world demonstrations of human players
can potentially further strengthen model generalization
[3, 11].

3. Currently decentralized TeamCraft agents rely solely on
implicit communication [22]; i.e., through passively per-
ceiving other agents and the environment, to gather infor-
mation and to collaborate. Enabling agents to communi-
cate explicitly via natural language [23, 37, 40] has great
potential in avoiding redundant actions and increasing
efficiency.

4. Multi-player video games have been widely used as
testbeds for human-AI collaboration [1, 5, 14]. Extending
TeamCraft with human players is a promising research
direction.
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Appendices
A. High Level Skills
The action space of agents mainly involves high-level self-
explanatory skills such as obtainBlock and farmWork. We
provided 8 such skills. Most skills take three input param-
eters, including 1) agent name such as bot1, as the action
executing entity, 2) item name such as dirt, which strongly
associated with task goal or agent’s inventory, 3) a vector
indicating the position of the target on the test field.

For example, obtainBlock(bot1, new Vec3(1,
0, 1)) takes the agent name bot1 and a 3D vector (1,
0, 1) as its arguments. It directs bot1 to perform multiple
actions in Minecraft via APIs provided by Mineflayer. First,
it controls bot1 to goto a diggable position for block (1,
0, 1), then has bot1’s vision ray cast to the block at (1,
0, 1) using the lookAt action. Next, it commands bot1
to equip a proper tool that can dig the block at (1, 0,
1) most efficiently, and then instructs bot1 to dig the target
block. Once the target block has been mined, bot1 will
goto the position where the block item dropped and collect
it.

Similarly, farmWork(bot2, "sow", "potato",
new Vec3(2, 0, 4)) takes the agent name bot2, ac-
tion type "sow" (as opposed to "harvest"), crop seed
item "potato", and a 3D vector (2, 0, 4) as its ar-
guments. It directs bot2 to goto a placeable position for
farmland at (2, 0, 4), then check if the seed is a valid
item—that is, a crop seed available within bot2’s inventory.
It then checks if the farmland at (2, 0, 4) is plantable.
Finally, it instructs bot2 to lookAt the farmland and sow
it with the seed "potato".

Table 4 documents all the skills, which are implemented
in JavaScript code with Mineflayer APIs.

B. Low Level Atomic Actions
High level skills are processed through multiple stages be-
fore reaching the final execution APIs. At each time step,
TeamCraft accepts a list of skills as input, with a maximum
length equal to the number of agents involved in the current
task and a minimum length of zero. Each agent can perform
at most one skill per time step. The updated list of skills is
then passed into the JavaScript environment along with the
predefined atomic actions. Each atomic action is processed
simultaneously, meaning that agents’ actions are executed
concurrently rather than sequentially. This avoid the depen-
dency issue that might occur in sequential execution. For
example, if one agent’s action is executed ahead of another’s,
the first agent may block the location where the next agent
intends to place a block. The agent whose atomic action is ex-
ecuted first will have a higher chance of success, potentially
altering the dynamics of the multi-agent setting. Execut-
ing actions concurrently ensures fairness among agents and

maintains the equivalence of the multi-agent environment.

C. Visual Diversity
TeamCraft uses a set of visual variate to provide a visual
rich environment. Each task is constructed from a random
number of agents, in a randomly selected scene, achieving
different goal on playground built by different base block.

C.1. Shared Elements
Each task begins with a basic setting involving multiple
agents on a playground. Each agent has a unique skin, as
illustrated in Figure 23, and is rendered as a two-block-
high character. The playground combines a base platform
spawned within a Minecraft biome. The base block is also
randomly selected from a pool,shown in Figure 23. Each
biome offers variations in special surrounding blocks, de-
signs, and environments.

For example, the seaside village biome is a vil-
lage near the sea with houses made of oak wood and cobble-
stone, decorated with flowers and cow sheds, as shown in
Figure 28. It also features a nearby farm surrounded by oak
logs (Figure 29). Another variation of village is the desert
village biome, built from acacia planks, acacia logs, and
sandstone, blending seamlessly with the desert’s arid terrain,
shown in Figure 30. Figure 31 illustrates a biome that is
located on half of the mountains, where a small flat land
protruding from a cliff. Additional examples of biomes used
are shown in Figure 32, Figure 33, and Figure 34.

C.2. Task Specific Diversity
Clearing task uses a random set of blocks as its targets, il-
lustrated in Figure 24. Building task also uses a random set
of blocks as its target, with some blocks shared with clear-
ing task, as illustrated in Figure 25. Unlike other tasks, the
Farming task does not use a regular base. The playground
is constructed from a combination of farmland for plant-
ing crops, water blocks, and randomly selected unfarmable
blockers from the base that replace some of the farmland.
An example is shown in Figure 39. Each corps used in farm-
ing task has its own grown stage with different appearances,
shown in Figure 26. Smelting task requires a wide varieties
of resources to achieve its goal. Resources could be either
entity, block, or item, shown in Figure 27.

Detailed statistics of each task are presented in Table 11,
Table 12, Table 13, and Table 14 of Appendix J.

D. Planner for Expert Demonstration
TeamCraft employed a planner to assign actions to each
agent at every time step, utilizing perfect knowledge of the
task including goal object positions, agents’ inventories, and
each agent’s efficiency in performing actions. The planner
optimizes actions using a cost function designed to minimize
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Table 4. Action space of TeamCraft .

Type Arguments Description

placeItem BotID, ItemType, Location BotID places an item of ItemType at the specified 3D Location.

mineBlock BotID, Location BotID mines a block at the specified 3D Location.

farmWork BotID, Location, Action, ItemType BotID performs an Action (sow or harvest) on ItemType at the specified 3D Location.

obtainBlock BotID, Location BotID obtains a block from the specified 3D Location.

putFuelFurnace BotID, ItemType, Location BotID places an ItemType as fuel into a furnace at the specified 3D Location.

putItemFurnace BotID, ItemType, Location BotID inserts an ItemType into a furnace at the specified 3D Location.

takeOutFurnace BotID, ItemType, Location BotID removes an ItemType from a furnace at the specified 3D Location.

killMob BotID, Location BotID engages and eliminates a mob at the specified 3D Location.

the total time to complete the task, reduce idle times for
agents, minimize action dependencies to prevent agents from
waiting on others, maximize parallelism of actions, assign
tasks to the most efficient agents, and eliminate redundant
or unnecessary actions. The cost function considers the
following components:

Minimize Total Task Completion Time T : Denoted by
minT , our primary objective is to reduce the overall time
required to complete the task, measured in time steps until
the last agent finishes their final action.

Minimize Idle Actions for Each Agent E: Denoted by
min

∑N
i=1 Ei, we minimize the total empty actions, the sum

of empty action Ei preformed by agent i.

Minimize Action Dependencies Across Agents D: De-
noted by minD, we minimize dependencies cause agents to
wait for others to complete certain actions.

Minimize Redundant or Useless Actions U : Denoted
by minU , we minimize the total number of redundant or
unnecessary actions performed by all agents.

Maximize Action Efficiency: We assign actions to agents
with higher capabilities to minimize the overall cost,
min

∑N
i=1

∑
j∈Ai

cij , where cij be the cost (inverse of effi-
ciency) for agent i to perform action j.

We assign each component a weight as follows:

C = w1T+w2

N∑
i=1

Ei+w3D+w4

N∑
i=1

∑
j∈Ai

cij+w5U (5)

where w1, w2, w3, w4, and w5 are weighting coefficients
that are adjusted for each task as described below:

Building: In the building task, where dependencies are
moderate and parallelization is preferred, we place greater
emphasis on minimizing idle actions by setting w2 = 1.4
and assign a weight of 0.9 to the other components. This
encourages agents to remain active and reduces idle time,
enhancing overall efficiency.

Clearing: In the clearing task, using the correct tools can
significantly speed up block removal (up to a threefold in-
crease). Therefore, we assign a higher weight of w4 = 1.8
to maximize action efficiency by assigning tasks to the most
capable agents. The other weights are set to 0.8 to maintain
overall performance while focusing on efficient tool usage.

Farming: Farming task is not heavily constrained by ac-
tion dependencies, we assign equal weights of 1 to all com-
ponents, ensuring a balanced consideration of time mini-
mization, idle actions, action dependencies, action efficiency,
and redundancy elimination.

Smelting: In the smelting task, which involves compara-
tively long and highly dependent action sequences, we prior-
itize minimizing action dependencies by setting w3 = 1.8.
The other weights are assigned a value of 0.8 to support this
focus, facilitating smoother coordination among agents and
reducing waiting times.

D.1. Example Expert Demonstrations
Figure 35 and Figure 36 show a classic example of the build-
ing task, which involves three agents building a 2×3 building
on the mountain half. Each of the agents has some of the
needed blocks in their inventory to build the building. For
every time step after Step 0, each of the three agents build
one block from the bottom level to the second level.

Figure 37 shows an example of the clearing task. Two
agents are assigned to clean the blocks on a 6× 6 platform.
Each of them has a stone pickaxe in their inventory, which
is the efficient tool for breaking "stone-like" blocks. In this
case, they are able to break brick and sandstone in just one
time step with pickaxe but require two time steps to break
"wood-made" blocks such as bookshelf and crafting table.
This resulted in time Step 2 and Step 3 having exactly the
same visual observation, shown in Figure 38.

Figure 39 and Figure 40 shows an example of two agents
farming on a snow mountain for two extra carrots. In Step 1,
agent1 and agent2 both sow the carrots on the open ground.
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System Prompt
Three bots need to build a building on the platform. Target building is: Put sea_lantern on [0 ,1 ,0]. Put oak_fence on
[-1 ,1 ,0]. Put sponge on [0 ,1 ,-1]. Put emerald_block on [-1 ,1 ,-1]. Put dirt on [0 ,0 ,0]. Put bricks on [-1 ,0 ,0]. Put
emerald_block on [0 ,0 ,-1]. Put clay on [-1 ,0 ,-1]. .

User Prompt
bot1 has 4 dirt. bot1 has 3 clay. bot1 has 7 emerald_block. bot1 has 1 oak_fence. bot1 has 3 sponge. bot1 has 1 bricks.
bot1 has 3 sea_lantern. bot2 has 4 bricks. bot2 has 2 sponge. bot2 has 6 sea_lantern. bot2 has 2 oak_fence. bot2 has 4
emerald_block. bot2 has 1 dirt. bot2 has 3 clay. bot3 has 6 emerald_block. bot3 has 4 oak_fence. bot3 has 2 dirt. bot3
has 2 sponge. bot3 has 3 clay. bot3 has 2 sea_lantern. bricks is on [-1 ,0 ,0]. dirt is on [0 ,0 ,0]. Write the actions for
bot1, bot2 and bot3 based on this given observation.

Figure 7. Prompt example for Building task under the grid-world setting.

System Prompt
Three bots need to break everything on the platform. clay is on [-2 ,0 ,-2]. birch_log is on [-2 ,0 ,0]. dirt is on [-1 ,0 ,-2].
crafting_table is on [-1 ,0 ,1]. anvil is on [-1 ,1 ,1]. anvil is on [0 ,0 ,-2]. iron_ore is on [0 ,0 ,1]. cobweb is on [1 ,0 ,1].

User Prompt
bot1 has 1 stone_pickaxe. bot1 has 1 anvil. bot2 has 1 stone_axe. bot2 has 1 crafting_table. bot3 has 1 stone_pickaxe.
bot3 has 1 dirt. clay is on [-2 ,0 ,-2]. birch_log is on [-2 ,0 ,0]. iron_ore is on [0 ,0 ,1]. cobweb is on [1 ,0 ,1]. Write
the actions for bot1, bot2 and bot3 based on this given observation.

Figure 8. Prompt example for Clearing task under the grid-world setting.

In Step 2 they saw that the carrots are ready to collect and
they both collected one carrot in Step 3 and eventually they
collected two carrots.

Figure 41 and Figure 42 shows an example of the smelting
task, where two agents need to cook two porkchops. In
Step 1, one agent is in charge of adding the fuel to the
furnace and the other agent tries to kill the pig to obtain a
raw porkchop. Since bot2 already has one porkchop, it only
requires one additional porkchop. In Step 2, both agents
put the porkchop into the furnace and in Step 3, they have 2
cooked porkcops.

E. Grid-World Settings
Under the grid-world setting, we replace the three ortho-
graphic view images and first person view images with text
descriptions of the task goal and current environment states,
and provide them as input to the model. Here we show one
example of the prompt construction in each task.

Building: As shown in Figure 7, the system prompt con-
sists of both task description and the target building coordi-
nation of each block. The user prompt consists of the built
blocks and the inventories of the agents.

Clearing: As shown in Figure 8, the system prompt con-
sists of both task description and the blocks that appeared on
the platform initially. The user prompt consists of the blocks
that appeared on the platform at current time step and the
inventories of the agents.

Farming: As shown in Figure 9, the system prompt con-
sists of both task description and the blocks in the farmland.
The user prompt consists of the blocks in the farmland and
crops information at current time step and the inventories of
the agents.

Smelting: As shown in Figure 10, the system prompt con-
sists of both task description, instructions to craft different
items and the blocks in the field. The user prompt consists of
the blocks locations at current time step and the inventories
of the agents.
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System Prompt
Two bots need to grow on the platform. The goal is to get 5 carrot. farmland is on [-3 ,-1 ,-2] with value of 7.
cyan_concrete is on [-3 ,-1 ,-1]. water is on [-3 ,-1 ,0]. cyan_concrete is on [-3 ,-1 ,1]. cyan_concrete is on [-3 ,-1
,2]. farmland is on [-2 ,-1 ,-2] with value of 7. cyan_concrete is on [-2 ,-1 ,-1]. water is on [-2 ,-1 ,0]. farmland is
on [-2 ,-1 ,1] with value of 7. cyan_concrete is on [-2 ,-1 ,2]. cyan_concrete is on [-1 ,-1 ,-2]. cyan_concrete is on
[-1 ,-1 ,-1]. water is on [-1 ,-1 ,0]. farmland is on [-1 ,-1 ,1] with value of 7. farmland is on [-1 ,-1 ,2] with value of
7. cyan_concrete is on [0 ,-1 ,-2]. farmland is on [0 ,-1 ,-1] with value of 7. water is on [0 ,-1 ,0]. cyan_concrete is
on [0 ,-1 ,1]. cyan_concrete is on [0 ,-1 ,2]. cyan_concrete is on [1 ,-1 ,-2]. cyan_concrete is on [1 ,-1 ,-1]. water is
on [1 ,-1 ,0]. farmland is on [1 ,-1 ,1] with value of 7. cyan_concrete is on [1 ,-1 ,2]. cyan_concrete is on [2 ,-1 ,-2].
cyan_concrete is on [2 ,-1 ,-1]. water is on [2 ,-1 ,0]. cyan_concrete is on [2 ,-1 ,1]. farmland is on [2 ,-1 ,2] with value
of 7. cyan_concrete is on [3 ,-1 ,-2]. farmland is on [3 ,-1 ,-1] with value of 7. water is on [3 ,-1 ,0]. cyan_concrete is
on [3 ,-1 ,1]. farmland is on [3 ,-1 ,2] with value of 7.

User Prompt
bot1 has 5 carrot. bot1 has 2 beetroot. bot1 has 3 potato. bot2 has 2 carrot. bot2 has 2 beetroot. bot2 has 2 wheat_seeds.
farmland is on [-3 ,-1 ,-2] with value of 7. cyan_concrete is on [-3 ,-1 ,-1]. water is on [-3 ,-1 ,0]. cyan_concrete is
on [-3 ,-1 ,1]. cyan_concrete is on [-3 ,-1 ,2]. farmland is on [-2 ,-1 ,-2] with value of 7. cyan_concrete is on [-2 ,-1
,-1]. water is on [-2 ,-1 ,0]. farmland is on [-2 ,-1 ,1] with value of 7. cyan_concrete is on [-2 ,-1 ,2]. cyan_concrete
is on [-1 ,-1 ,-2]. cyan_concrete is on [-1 ,-1 ,-1]. water is on [-1 ,-1 ,0]. farmland is on [-1 ,-1 ,1] with value of 7.
farmland is on [-1 ,-1 ,2] with value of 7. cyan_concrete is on [0 ,-1 ,-2]. farmland is on [0 ,-1 ,-1] with value of 7.
water is on [0 ,-1 ,0]. cyan_concrete is on [0 ,-1 ,1]. cyan_concrete is on [0 ,-1 ,2]. cyan_concrete is on [1 ,-1 ,-2].
cyan_concrete is on [1 ,-1 ,-1]. water is on [1 ,-1 ,0]. farmland is on [1 ,-1 ,1] with value of 7. cyan_concrete is on [1
,-1 ,2]. cyan_concrete is on [2 ,-1 ,-2]. cyan_concrete is on [2 ,-1 ,-1]. water is on [2 ,-1 ,0]. cyan_concrete is on [2 ,-1
,1]. farmland is on [2 ,-1 ,2] with value of 7. cyan_concrete is on [3 ,-1 ,-2]. farmland is on [3 ,-1 ,-1] with value of 7.
water is on [3 ,-1 ,0]. cyan_concrete is on [3 ,-1 ,1]. farmland is on [3 ,-1 ,2] with value of 7. carrots is on [3 ,0 ,-1]
with value of 0. carrots is on [3 ,0 ,2] with value of 0. Write the actions for bot1, bot2 based on this given observation.

Figure 9. Prompt example for Farming task under the grid-world setting.

System Prompt
Two bots need to craft 2 stone. here are the instructions: Cooking Food: 1. To cook a ’cooked_beef’... cobblestone is
on [-2 ,0 ,2]. furnace is on [0 ,0 ,1]. spruce_planks is on [2 ,0 ,-3]. cobblestone is on [2 ,0 ,-1].

User Prompt
bot1 has 1 iron_sword. bot1 has 1 iron_shovel. bot1 has 1 iron_pickaxe. bot1 has 1 cobblestone. bot1 has 1
spruce_planks. bot2 has 1 spruce_planks. bot2 has 1 iron_shovel. bot2 has 2 iron_pickaxe. cobblestone is on [-2 ,0 ,2].
furnace is on [0 ,0 ,1]. spruce_planks is on [2 ,0 ,-3]. cobblestone is on [2 ,0 ,-1]. Write the actions for bot1, bot2
based on this given observation.

Figure 10. Prompt example for Smelting task under the grid-world setting.
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Top View

Side View

Front View

Figure 11. Combining three orthogonal view images into a single
composite image as model input.

F. TeamCraft-VLA Implementation Details
We use Vicuna-v1.5 as the LLM backbone. For the visual en-
coder, we employ CLIP ViT-L/14 to process all input images,
including three orthogonal views and the first-person view
of the agents. The image embeddings are then projected into
the LLM space with a linear projection layer and concate-
nated with the text embeddings. The combined embeddings
are fed into the LLM, which outputs the final action. During
training, we froze the visual encoder and projector and only
finetune the LLM. All image embeddings are positioned
before the text embeddings, separated by "image start" and
"image end" tokens. In centralized settings, where the num-
ber of images varies depending on the number of agents, we
pad a dummy image at the end for training stability if the
task involves only two agents. In decentralized settings, the
number of image inputs remains unaffected, as the model
processes only the first-person view of the current agent,
excluding views from others.

We train each model for 3 epochs using the training split,
leveraging 8 A100 GPUs with a global batch size of 16. In
the centralized setting, training the 7B model takes 36 hours,
while the 13B model requires 72 hours. In the decentralized
setting, the training duration doubles, with the 7B model
requiring 72 hours and the 13B model taking 144 hours. In
the grid-world setting, training the 7B model takes 20 hours.

F.1. Arrangement of Three Orthogonal Views
For training and evaluation, we combine the three orthogonal
view images into a single composite image by arranging
them to the upper-left top-left corner, top-right corner, and
the lower-left corner of the composite image. An example
of this arrangement is shown in Figure 11. This process is
to reduce the number of images provided to the model to
conform with the 4096 context length limit.

F.2. Hyperparameters
We present the hyperparameters for VLA training in Table 5.

F.3. Model Output Parsing
The output of the model is a string which will be parsed
into the pre-defined high level skills. The string will be first
processed by removing special sentence begin token, <s>,

and ending token </s>. It will then be split into a list, where
each item is parsed as the skill of one agent.

G. Additional Results of TeamCraft-VLA
G.1. Task Success Rate and Subgoal Success Rate
We show task success rate and subgoal success rate of cen-
tralized and decentralized 7B models with different data
scales in Table 6, and those of 13B models in Table 7. We
compare among different centralized models in Table 8.

G.2. Redundancy Rate
We present a more detailed analysis of redundancy rates,
including the 13B models, in Table 9. Both the 7B and 13B
models exhibit redundancy issues in decentralized settings.
Increasing model size alone does not resolve the redundancy
problem in such scenarios.

G.3. Action Sequence Length
We compared the average action lengths across different
splits between the 7B and 13B models under both centralized
and decentralized settings, as shown in Table 10. In general,
decentralized settings require longer action sequences to
complete tasks. Among the splits, the Goal split is the most
challenging, as it demands more actions to accomplish the
tasks.

G.4. Case Study
We next present a detailed failure case analysis by categories:

Object Mismatching: As an example (Figure 12), in the
farming tasks two agents need to get 10 beetroot. In Step 0,
the actions involve a mismatch in the objects; the agents
mistakenly sow "beet_seeds" instead of "beetroot_seeds."
Consequently, in Step 1, due to the object mismatch, no
crops grow on the farmland. As another example, two agents
need to get 2 dried kelp in the smelting task (Figure 13). The
task requires one bot to put the kelp and the other put the
fuel. However, in this example bot1 mistake the object "kelt"
to "cobbl1".

Task Allocation Failure: This occurs when a task requires
four agents. As two examples, four agents must break every-
thing on the platform in the clearing task (Figure 14), and
construct on the platform in the building task (Figure 15).
Only three agents are assigned distinct actions, leaving the
fourth agent idle.

Object State Recognition Failure: As an example (Fig-
ure 16), a farming task requires two agents to collect four
additional carrots. In Step 0, bot1 and bot2 both sow carrots
and attempt to harvest them in Step 2. However, at that time,
the carrots are still immature and not ready for collection.
The mature state of the carrot is shown in Figure 26.
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Table 5. Hyperparameters for TeamCraft-VLA

lr model max length vision tower patch size resolution language model optimizer lr scheduler type warmup ratio

2e-5 4096 openai-clip-vit-large 14 336*336 Vicuna-v1.5 AdamW constant_with_warmup 0.03

Table 6. Task success rates and subgoal success rates of the TeamCraft-VLA-7B-Cen and TeamCraft-VLA-7B-Dec models. Subgoal success
rates are given in parentheses.

Tasks Condition
Centralized Decentralized

10% 50% 100% 10% 50% 100%

Building

Test 0.00 (0.12) 0.38 (0.76) 0.42 (0.81) 0.00 (0.18) 0.00 (0.28) 0.00 (0.38)
Shape 0.00 (0.12) 0.20 (0.67) 0.30 (0.75) 0.00 (0.15) 0.00 (0.25) 0.00 (0.40)
Material 0.00 (0.13) 0.18 (0.64) 0.30 (0.74) 0.00 (0.13) 0.00 (0.20) 0.00 (0.34)
Scene 0.00 (0.15) 0.36 (0.73) 0.40 (0.83) 0.00 (0.16) 0.00 (0.21) 0.00 (0.36)
Agents 0.00 (0.18) 0.02 (0.50) 0.02 (0.57) 0.00 (0.12) 0.00 (0.20) 0.00 (0.14)

Clearing

Test 0.00 (0.13) 0.08 (0.43) 0.64 (0.91) 0.00 (0.45) 0.02 (0.35) 0.20 (0.68)
Shape 0.00 (0.09) 0.08 (0.34) 0.56 (0.91) 0.00 (0.47) 0.02 (0.27) 0.16 (0.74)
Material 0.00 (0.10) 0.12 (0.45) 0.56 (0.90) 0.00 (0.48) 0.00 (0.22) 0.16 (0.67)
Scene 0.00 (0.11) 0.10 (0.44) 0.58 (0.92) 0.00 (0.41) 0.04 (0.37) 0.10 (0.64)
Agents 0.00 (0.16) 0.14 (0.64) 0.36 (0.81) 0.02 (0.50) 0.02 (0.54) 0.12 (0.60)

Farming

Test 0.14 (0.43) 0.34 (0.60) 0.36 (0.63) 0.02 (0.07) 0.02 (0.14) 0.00 (0.09)
Crop 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Scene 0.16 (0.39) 0.34 (0.65) 0.38 (0.67) 0.00 (0.05) 0.00 (0.11) 0.02 (0.07)
Agents 0.02 (0.18) 0.18 (0.61) 0.38 (0.68) 0.00 (0.08) 0.00 (0.11) 0.04 (0.27)

Smelting

Test 0.06 (0.17) 0.20 (0.36) 0.24 (0.28) 0.08 (0.13) 0.08 (0.09) 0.16 (0.29)
Goal 0.08 (0.21) 0.04 (0.07) 0.00 (0.00) 0.08 (0.17) 0.00 (0.00) 0.00 (0.00)
Furnace 0.10 (0.28) 0.10 (0.20) 0.18 (0.20) 0.06 (0.07) 0.06 (0.06) 0.06 (0.16)
Scene 0.08 (0.19) 0.14 (0.28) 0.18 (0.23) 0.08 (0.19) 0.14 (0.19) 0.12 (0.28)
Agents 0.00 (0.15) 0.02 (0.24) 0.06 (0.13) 0.04 (0.05) 0.00 (0.02) 0.02 (0.28)

Table 7. Task success rates and subgoal success rates of the TeamCraft-VLA-13B-Cen and TeamCraft-VLA-13B-Dec models. Subgoal
success rates are given in parentheses.

Tasks Condition
Centralized Decentralized

10% 50% 100% 10% 50% 100%

Building

Test 0.00 (0.18) 0.46 (0.80) 0.48 (0.79) 0.00 (0.13) 0.00 (0.18) 0.00 (0.31)
Shape 0.00 (0.16) 0.30 (0.73) 0.26 (0.69) 0.00 (0.15) 0.00 (0.15) 0.00 (0.32)
Material 0.00 (0.15) 0.24 (0.65) 0.08 (0.63) 0.00 (0.14) 0.00 (0.14) 0.00 (0.31)
Scene 0.00 (0.16) 0.38 (0.75) 0.48 (0.83) 0.00 (0.17) 0.00 (0.17) 0.00 (0.28)
Agents 0.00 (0.16) 0.00 (0.49) 0.04 (0.59) 0.00 (0.14) 0.00 (0.16) 0.00 (0.23)

Clearing

Test 0.04 (0.37) 0.42 (0.83) 0.64 (0.94) 0.00 (0.46) 0.02 (0.62) 0.02 (0.60)
Shape 0.00 (0.26) 0.42 (0.85) 0.78 (0.96) 0.00 (0.47) 0.00 (0.57) 0.04 (0.58)
Material 0.04 (0.36) 0.36 (0.83) 0.56 (0.92) 0.02 (0.53) 0.00 (0.60) 0.02 (0.58)
Scene 0.06 (0.35) 0.44 (0.88) 0.48 (0.90) 0.00 (0.55) 0.02 (0.59) 0.08 (0.64)
Agents 0.02 (0.55) 0.16 (0.65) 0.16 (0.77) 0.02 (0.50) 0.02 (0.52) 0.02 (0.50)

Farming

Test 0.4 (0.72) 0.62 (0.79) 0.46 (0.73) 0.08 (0.39) 0.04 (0.23) 0.02 (0.33)
Crop 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Scene 0.30 (0.69) 0.52 (0.76) 0.44 (0.75) 0.04 (0.32) 0.06 (0.29) 0.10 (0.33)
Agents 0.12 (0.54) 0.44 (0.79) 0.36 (0.72) 0.02 (0.22) 0.00 (0.19) 0.02 (0.23)

Smelting

Test 0.06 (0.08) 0.22 (0.44) 0.32 (0.59) 0.10 (0.25) 0.06 (0.09) 0.10 (0.19)
Goal 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.10) 0.00 (0.00) 0.00 (0.00)
Furnace 0.06 (0.08) 0.20 (0.40) 0.18 (0.38) 0.06 (0.12) 0.04 (0.08) 0.04 (0.07)
Scene 0.04 (0.08) 0.16 (0.43) 0.24 (0.56) 0.12 (0.28) 0.04 (0.09) 0.08 (0.18)
Agents 0.00 (0.03) 0.00 (0.26) 0.04 (0.37) 0.00 (0.02) 0.00 (0.01) 0.00 (0.00)

15



Table 8. Task success rates and subgoal success rates of various centralized models. Subgoal success rates are given in parentheses. All
models are trained with the full training data except GPT-4o.

Tasks Condition TeamCraft-VLA-7B TeamCraft-VLA-13B GPT-4o TeamCraft-7B-GridWorld

Building

Test 0.42 (0.81) 0.48 (0.79) 0.00 (0.07) 0.42 (0.88)
Shape 0.30 (0.75) 0.26 (0.69) 0.00 (0.08) 0.50 (0.90)
Material 0.30 (0.74) 0.08 (0.63) 0.00 (0.07) 0.26 (0.82)
Scene 0.40 (0.83) 0.48 (0.83) 0.00 (0.07) 0.48 (0.89)
Agents 0.02 (0.57) 0.04 (0.59) 0.00 (0.00) 0.12 (0.71)

Clearing

Test 0.64 (0.91) 0.64 (0.94) 0.00 (0.03) 1.00 (1.00)
Shape 0.56 (0.91) 0.78 (0.96) 0.00 (0.04) 1.00 (1.00)
Material 0.56 (0.91) 0.56 (0.92) 0.00 (0.12) 1.00 (1.00)
Scene 0.58 (0.92) 0.48 (0.90) 0.00 (0.06) 1.00 (1.00)
Agents 0.36 (0.81) 0.16 (0.77) 0.00 (0.00) 0.84 (0.97)

Farming

Test 0.36 (0.64) 0.46 (0.73) 0.00 (0.00) 0.78 (0.86)
Crop 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Scene 0.38 (0.67) 0.44 (0.75) 0.00 (0.00) 0.90 (0.96)
Agents 0.38 (0.68) 0.36 (0.72) 0.00 (0.00) 0.40 (0.73)

Smelting

Test 0.24 (0.28) 0.32 (0.59) 0.02 (0.02) 0.24 (0.51)
Goal 0.00 (0.00) 0.00 (0.00) 0.08 (0.08) 0.00 (0.00)
Furnace 0.18 (0.20) 0.18 (0.38) 0.00 (0.00) 0.24 (0.39)
Scene 0.18 (0.23) 0.24 (0.56) 0.00 (0.00) 0.36 (0.58)
Agents 0.06 (0.13) 0.04 (0.37) 0.00 (0.00) 0.00 (0.31)

Table 9. Comparison of TeamCraft-VLA redundancy rates.

Test Goal Scene Agents Average

TeamCraft-VLA-7B-Cen 0.01 0.02 0.01 0.01 0.01
TeamCraft-VLA-13B-Cen 0.01 0.00 0.01 0.01 0.01
TeamCraft-VLA-7B-Dec 0.13 0.12 0.13 0.24 0.15
TeamCraft-VLA-13B-Dec 0.11 0.11 0.12 0.22 0.14

Table 10. Comparison of TeamCraft-VLA action sequence length.

Test Goal Scene Agents Average

TeamCraft-VLA-7B-Cen 6.62 7.63 5.93 6.35 6.63
TeamCraft-VLA-13B-Cen 6.25 7.44 6.46 6.47 6.65
TeamCraft-VLA-7B-Dec 8.42 8.53 8.06 7.38 8.1
TeamCraft-VLA-13B-Dec 8.62 8.46 8.41 6.71 8.04

H. GPT-4o Implementation
We use gpt-4o-2024-08-06 as the proprietary VLA.
Specifically, we use similar prompt structures as the cen-
tralized finetuned TeamCraft-VLA model, with additional
task information in the initial system prompt as shown in
Figure 17, Figure 19 and Figure 21 to provide background

knowledge of the task. The system prompt contains recipes,
input, output formats, all available blocks, items, workspace
limitations, and one successful rollout of a similar task in the
same task family. At the first step, we additionally provide
the first user prompt, where the model is given a specific
multi-modal task specification accompanied by initial visual
observations and inventory details of the agents. Based on
the system prompts and user prompts, the model predicts
the actions. As the interaction progresses with subsequent
prompts, the context is maintained and expanded with the
addition of prior responses and updated visual data as shown
in Figure 18.

I. GPT-4o Error Analysis
We visualized some failure cases in Figure 17, Figure 18,
Figure 19, Figure 20, Figure 21 and Figure 22. In general,
GPT4-o fail to understand spatial relations and often chooses
the incorrect coordinates as the locations for placing and min-
ing actions. In addition, the model sometimes fails to follow
instructions and does not harvest the crop in the farming task,
as shown in Figure 21 and Figure 22.
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System Prompt
Two bots need to grow on the platform. The goal is to get 10 beetroot. Write the actions for bot1, bot2 based on this
given observation."

(a) orthographic views of the task

Step 0:

User Prompt
bot1 has 7 beetroot_seeds. bot1 has 1 carrot. bot1 has 3 potato. bot2 has 5 beetroot_seeds. bot2 has 2
wheat_seeds. Write the actions for bot1, bot2 based on this given observation.

(b) Agent1 observation (c) Agent2 observation

Actions
["farm_work(bot1, new Vec3(-1,-1,2), ’sow’, ’beat_seeds’)",
"farm_work(bot2, new Vec3(-2,-1,-2), , ’sow’, ’beat_seeds’)"]

Step 1:

User Prompt
bot1 has 7 beetroot_seeds. bot1 has 1 carrot. bot1 has 3 potato. bot2 has 5 beetroot_seeds. bot2 has 2
wheat_seeds. Write the actions for bot1, bot2 based on this given observation.

(d) Agent1 observation (e) Agent2 observation

Actions
["farm_work(bot1, new Vec3(3,-1,-1), ’sow’, ’beat_seeds’)",
"farm_work(bot2, new Vec3(0,-1,-1), ’sow’, ’beat_seeds’)"]

Figure 12. Object mismatching Example 1.
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System Prompt
"Two bots need to craft 2 dried_kelp. here are the instructions: . . . To cook a ’dried_kelp’, I need a ’kelp’. ... ",

(a) orthographic views of the task

Step 0:

User Prompt
bot1 has 1 iron_pickaxe. bot1 has 1 iron_axe. bot2 has 2 charcoal. bot2 has 1 iron_shovel. bot2 has 1
iron_sword. Write the actions for bot1, bot2 based on this given observation.

(b) Agent1 observation (c) Agent2 observation

Actions
[putItemFurnace(bot1, ’cobbl1’, new Vec3(0,0,-1)),
putFuelFurnace(bot2, ’charcoal’, new Vec3(0,0,-1))]

Step 1:

User Prompt
bot1 has 2 kelp. bot1 has 1 iron_pickaxe. bot1 has 1 iron_axe. bot2 has 1 charcoal. bot2 has 1 iron_shovel.
bot2 has 1 iron_sword. Write the actions for bot1, bot2 based on this given observation.

(d) Agent1 observation (e) Agent2 observation

Actions
[putItemFurnace(bot1, ’cobbl1’, new Vec3(0,0,-1)),
putFuelFurnace(bot2, ’charcoal’, new Vec3(0,0,-1))]

Figure 13. Object mismatching Example 2.
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System Prompt
"Four bots need to break everything on the platform." ",

(a) orthographic views of the task

Step 0:

User Prompt
bot0 has 1 stone_axe. bot1 has 1 stone_shovel. bot2 has 1 stone_pickaxe. bot3 has 1 stone_sword. Write the
actions for bot0, bot1, bot2, bot3 based on this given observation.

(b) Agent0 observation (c) Agent1 observation (d) Agent2 observation (e) Agent3 observation

Actions
[" mineBlock(bot1, new Vec3(-2,0,1)),
mineBlock(bot2, new Vec3(-1,0,0)),
mineBlock(bot3, new Vec3(1,0,1))", ]

Step 1:

User Prompt
Write the actions for bot0, bot1, bot2, bot3 based on this given observation."

(f) Agent0 observation (g) Agent1 observation (h) Agent2 observation (i) Agent3 observation

Actions
[" mineBlock(bot1, new Vec3(1,0,0)),
mineBlock(bot2, new Vec3(-2,0,-2)),
mineBlock(bot3, new Vec3(1,0,1))", ]

Figure 14. Task allocation failure Example 3.
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System Prompt
"Four bots need to build a building on the platform. "

(a) orthographic views of the task

Step 0:

User Prompt
bot0 has 4 bricks. bot0 has 5 sponge. bot0 has 2 oak_planks...bot1 has 1 pumpkin... bot2 has 3 bricks... bot3
has 1 clay... Write the actions for bot0, bot1, bot2, bot3 based on this given observation.

(b) Agent0 observation (c) Agent1 observation (d) Agent2 observation (e) Agent3 observation

Actions
[ " placeItem(bot1, ’bricks’, new Vec3(0,0,-1)),
placeItem(bot2, ’clay’, new Vec3(-1,0,-1)),
placeItem(bot3, ’clay’, new Vec3(1,0,-1))" ]

Step 1:

User Prompt
Write the actions for bot0, bot1, bot2, bot3 based on this given observation.

(f) Agent0 observation (g) Agent1 observation (h) Agent2 observation (i) Agent3 observation

Actions
["placeItem(bot1, ’sponge’, new Vec3(-1,1,-1)),
placeItem(bot2, ’bricks’, new Vec3(1,1,-1)),
placeItem(bot3, ’sponge’, new Vec3(0,1,-1))", ]

Figure 15. Task allocation failure Example 4.
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System Prompt
Two bots need to grow on the platform. The goal is to get 4 carrot.

(a) orthographic views of the task

Step 0:

User Prompt
"bot1 has 4 carrot. bot1 has 1 potato. bot1 has 1 beetroot. bot2 has 5 carrot. bot2 has 2 beetroot. bot2 has 3
wheat_seeds. bot2 has 2 potato. Write the actions for bot1, bot2 based on this given observation."

(b) Agent1 observation (c) Agent2 observation

Actions
[" farm_work(bot1, new Vec3(1,-1,-2), ’sow’, ’carrot’),
farm_work(bot2, new Vec3(2,-1,-2), ’sow’, ’carrot’)", ]

Step 2:

User Prompt
"bot1 has 3 carrot. bot1 has 1 potato. bot1 has 1 beetroot. bot2 has 5 carrot. bot2 has 2 beetroot. bot2 has 3
wheat_seeds. bot2 has 2 potato. Write the actions for bot1, bot2 based on this given observation."

(d) Agent1 observation (e) Agent2 observation

Actions
[" farm_work(bot1, new Vec3(-2,-1,-2), ’sow’, ’carrot’),
farm_work(bot2, new Vec3(-1,-1,1), ’sow’, ’carrot’)", ]

Figure 16. Object state recognition failure Example 5.
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System Prompt
You are controlling 3 bots in a Minecraft world. The goal is to build a specific structure on a platform.
Please review the images provided below, which include the current state of the world and the goal structure (the final
image is the three orthographic views of the goal). Based on these observations, generate actions for each bot to help
build the structure.
**Instructions:**
- **Action Format:**
- **Bots:**
- ‘botID‘ can be one of: ’bot1’, ’bot2’, ’bot3’, ’bot4’ (depending on the number of bots).
- **Blocks:**
- ‘"block"‘ is the type of block to place.
- **Available Blocks:**
- ‘oak fence", ‘birch log", ‘coal ore", ‘bricks", ‘sandstone", ‘stone", ‘iron ore", ‘gold ore", ‘sponge", ‘sea lantern",
dirt, ‘grass block", ‘clay", ‘oak planks", ‘emerald block", ‘pumpkin", ‘orange concrete", ‘purple wool", ‘end stone",
‘bookshelf", ‘acacia fence", ‘oak log".
- **Constraints:**
- **Inventory Awareness:** Ensure each bot has the necessary blocks in their inventory.
- **No Overlapping Blocks:** Do not place more than one block at the same position.
- **Workspace Dimensions:** The center of the workspace is at (0, 0, 0), and it spans 3 units along the x-axis, 3 units
along the z-axis, and 2 units along the y-axis.
- **One Action per Bot:** Each bot can place only one block at a time.
**Submission Guidelines:**
- Provide only the list of action commands for all bots.
- Do not include any additional text, explanations, or formatting (e.g., no code blocks or markdown).
- Example:
[ "placeItem(bot1, ’stone’, new Vec3(1, 0, 0))", "placeItem(bot2, ’oak planks’, new Vec3(0, 0, 1))" ]
You need to put "" for each entry in the list.
Please generate the list of commands based on the current observations and the goal image.

User Prompt
Here are the observations at the current time step for each agent. The final image is the goal image. bot1 has 5 dirt.
bot1 has 3 clay. bot1 has 7 emerald block. bot1 has 1 oak fence. bot1 has 3 sponge. bot1 has 1 bricks. bot1 has 3 sea
lantern. bot2 has 5 bricks. bot2 has 2 sponge. bot2 has 6 sea lantern. bot2 has 2 oak fence. bot2 has 4 emerald block.
bot2 has 1 dirt. bot2 has 3 clay. bot3 has 6 emerald block. bot3 has 4 oak fence. bot3 has 2 dirt. bot3 has 2 sponge.
bot3 has 3 clay. bot3 has 2 sea lantern.

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views of the goal

Assistant
[placeItem(bot1, emerald block, new Vec3(-1,0,-1)), placeItem(bot2, bricks, new Vec3(0,0,0)),
placeItem(bot3, sea lantern, new Vec3(-1,0,0))]

Figure 17. Sample rollouts of GPT-4o in a building task, Part I.
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User Prompt
Here are the observations at the current time step for each agent. The final image is the goal image. bot1 has ...

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views of the goal

Assistant
[placeItem(bot1, sponge, new Vec3(1,0,-1)), placeItem(bot2, oak fence, new Vec3(0,0,1))]

User Prompt
Here are the observations at the current time step for each agent. The final image is the goal image. bot1 has ...

(e) Agent1 observation (f) Agent2 observation (g) Agent3 observation (h) orthographic views of the goal

Assistant
[placeItem(bot3, sea lantern , new Vec3(0,0,-1))]

Comment
GPT-4o failed to place the blocks in the correct location. The agents placed an additional fence that is not required by
the goal. The sponge (yellow) block should be placed next to a sea lattern (white) block.

Figure 18. Sample rollouts of GPT-4o in a building task, Part II.
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System Prompt
You are controlling 3 bots in a Minecraft world. The goal is to break all blocks in the world.
Please review the images provided below, which include the current state of the world. Based on these observations,
generate actions for each bot to help break the required blocks.
**Instructions:**
- **Action Format:** - ‘mineBlock(botID, new Vec3(x,y,z))‘ to break a block at the specified coordinates.
- The up axis is the y-axis. x, y, z should be greater than 1.
- **Bots:** - ‘botID‘ can be one of: ’bot1’, ’bot2’, ’bot3’ (depending on the number of bots).
- **Constraints:**
- **Tool Awareness:** Each bot has tools in their inventory to break blocks. Use the ‘item dict durability‘ below to
determine how many actions are required based on the tool and block type.
- ‘item dict durability‘: item dict durbility
- For example, if a bot has a stone axe, it can break a ’bookshelf’ in 1 action; otherwise, it will take 2 actions.
- **No Duplicate Actions:** Ensure that no bot attempts to break the same block more than once.
- **Workspace Dimensions:** The center of the workspace is at (0, 0, 0), and it spans 5 units along the x-axis (-2, 2), 2
units along the y-axis, and 5 units along the z-axis (-2, 2). So the action can have negative numbers
- **One Action per Bot:** Each bot can attempt to break only one block at a time unless specified by ‘item dict
durability‘.
**Submission Guidelines:**
- Provide only the list of action commands for all bots.
- Do not include any additional text, explanations, or formatting (e.g., no code blocks or markdown).
- Example: [ "mineBlock(bot1, new Vec3(1,0,-1))", "mineBlock(bot2, new Vec3(-1,0,1))" ]
Please generate the list of commands based on the current observations, the goal image, and tool durability requirements.
Please generate the list of commands based on the current observations and the goal image.

User Prompt
Here are the observations at the current time step for each agent.

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant
[mineBlock(bot1, new Vec3(3,0,2)), mineBlock(bot2, new Vec3(2,0,1))]

Figure 19. Sample rollouts of GPT-4o in a clearing task, Part I.
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User Prompt
Here are the observations at the current time step for each agent. The final image is the goal image. bot1 has ...

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant
[mineBlock(bot1, new Vec3(3,0,2)), mineBlock(bot2, new Vec3(2,0,1))]

User Prompt
Here are the observations at the current time step for each agent. The final image is the goal image. bot1 has ...

(e) Agent1 observation (f) Agent2 observation (g) Agent3 observation (h) orthographic views

Assistant
[mineBlock(bot1, new Vec3(1,0,2)), mineBlock(bot2, new Vec3(2,0,1))]

Comment
The model did not predict correct block locations and failed to mine any blocks.

Figure 20. Sample rollouts of GPT-4o in a clearing task, Part II.
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System Prompt
You are controlling 3 bots in a Minecraft farming environment. The bots are responsible for planting, growing, and
harvesting crops like wheat, carrots, and potatoes in a designated farming area.
Please review the images provided below, which include the current state of the farm and the goal farm layout (the
final image is the 3-view of the goal). Based on these observations, generate farming commands for each bot to help
manage the farming tasks efficiently.
**Instructions:**
1. **Action Format:** - The actions are in the format: farmwork(botID, new Vec3(x, y, z), ’action’, ’crop’) - ‘botID‘
can be one of: ’bot1’, ’bot2’, or ’bot3’.
- ‘’action’‘ is the type of action the bot will perform, such as ‘’sow’‘ (for planting) or ‘’harvest’‘.
- ‘’crop’‘ is the type of crop the bot will interact with, such as ‘’wheat’‘, ‘’carrot’‘, ‘’potato’, or ’beetroots’.
2. **Bots:** - Each bot has its own inventory and task assignment for sowing seeds, watering, or harvesting the crops.
3. **Crops:** - The available crops are wheat, carrots, and potatoes. Ensure each bot is assigned to the correct action
and crop.
4. **Commands:** - Example commands: ["farmwork(bot1, new Vec3(0, 0, -1), ’sow’, ’carrot’)", "farmwork(bot2,
new Vec3(1, 0, -1), ’harvest’)"]
**Constraints:** - **Inventory Awareness:** Ensure each bot has the necessary items (seeds or tools) in their
inventory.
- **No Overlapping Actions:** Do not assign multiple bots to perform the same action on the same crop plot
simultaneously.
- **Workspace Dimensions:** The center of the workspace is at (0, 0, 0), and it spans 5 units along the x-axis (-3,3), 5
units along the z-axis(-3,3), and 3 units along the y-axis.
- **One Action per Bot:** Each bot can perform only one action at a time.
**Submission Guidelines:**
- Provide only the list of farming commands for all bots.
- Do not include any additional text, explanations, or formatting (e.g., no code blocks or markdown).
- Example: [ "farmwork(bot1, new Vec3(1, 0, 0), ’sow’, ’wheat’)", "farmwork(bot2, new Vec3(0, 0, 1), ’harvest’)" ]
Please generate the list of commands based on the current observations and the goal farm layout.
*** You need to harvest when the crop is ready to finish the task ***

User Prompt
Here are the observations at the current time step for each agent. Please harvest the crops when they are ready! You
can only harvest what you sow. You can only sow seeds on empty plots, and you can only sow what you have in your
inventory. When harvesting, do not specify the crop type. Here is the inventory status for each bot: bot1 has 7 xxx

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant
farmwork(bot1, new Vec3(0, 0, -1), ’sow’, ’potato’)
farmwork(bot2, new Vec3(1, 0, 0), ’sow’, ’potato’)
farmwork(bot3, new Vec3(-1, 0, 1), ’sow’, ’potato’)

Figure 21. Sample rollouts of GPT-4o in a farming task, Part I.
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User Prompt
Here are the observations at the current time step for each agent. bot1 has ...

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant
farmwork(bot1, new Vec3(0, 0, 1), ’sow’, ’potato’),
farmwork(bot2, new Vec3(0, 0, -1), ’sow’, ’potato’),
farmwork(bot3, new Vec3(1, 0, 0), ’sow’, ’potato’)

User Prompt
Here are the observations at the current time step for each agent. bot1 has ...

(e) Agent1 observation (f) Agent2 observation (g) Agent3 observation (h) orthographic views

Assistant
farmwork(bot1, new Vec3(-1, 0, 0), ’sow’, ’potato’),
farmwork(bot2, new Vec3(1, 0, 0), ’sow’, ’potato’),
farmwork(bot3, new Vec3(0, 0, 1), ’sow’, ’potato’)

Comment
The model does not follow instruction, and keeps predicting the sowing actions without harvesting.

Figure 22. Sample rollouts of GPT-4o in a farming task, Part II.
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GlowstonePodzolObsidianOak Wood Grass Block

Gold BlockStoneSmooth QuartzCyan Concrete Glass Hay Block Pink Wool

Bot3Bot2Bot1Bot0

Base Blocks

Bot Skins

Figure 23. A close-up view of the shared visual diversity in every tasks.

Crafting TablePumpkinGold OreOrange Concrete Bookshelf Sandstone Bricks

CobwebBirch LogGrass BlockAnvil Clay Coal Ore Dirt

Oak LogStoneOak FenceAcacia Fence Iron Ore

Stone PickaxeStone SwordStone ShovelStone Axe

Clearing
Targets

Clearing
Tools

Figure 24. A close-up view of the visual diversity in clearing tasks.
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Coal OrePumpkinGold OreOrange Concrete Oak Fence Sandstone Bricks

Birch LogIron OreDirt Clay Stone

Oak PlanksPurple WoolEnd StoneSponge

Building
Targets

(shared w/ Clearing)

Grass Block

Sea Lantern Emerald Block

Building
Targets

Acacia Fence

Bookshelf

Oak Log

Figure 25. A close-up view of the visual diversity in building tasks.
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Age 7Age 4-6Age 2-3Age 0-1

Farming
Crops

Age 7Age 4-6Age 2-3Age 0-1

Age 3Age 2Age 1Age 0 Age 4 Age 5

Age 6 Age 7

Age 3Age 2Age 1Age 0

Beetroot

Wheat

Potato

Carrot

Figure 26. A close-up view of crops appearances across various growing stages in farming tasks.
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SandstoneIron OreGold Ore Cobblestone

Smelting
Resources

Smelting
Resources

(Fuel)

Red Sand

ChickenMooshroomPig Cow Sheep Rabbit Salmon

Cod

Oak PlanksBirch PlanksSpruce PlanksAcacia Planks Coal Block Coal

CharcoalOak LogBirch LogSpruce LogAcacia Log Lava Bucket

Coal Ore

Potato

Wet Sponge Quartz Block Kelp

Iron PickaxeIron SwordIron ShovelIron Axe

StakeCooked ChickenCooked BeefCooked Porkchop Cooked SalmonCooked RabbitCooked Mutton

StoneSmooth SandstoneIron IngotGold Ingot Baked PotatoCooked CodGlass

Dried KelpSmooth QuartzSponge

Smelting
Goal

Smelting
Tools

Furnace

Figure 27. A close-up view of the visual diversity in smelting tasks.
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Figure 28. An example scene in the seaside village biome.

Figure 29. An example scene in the grass village biome.
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Figure 30. An example scene in the dessert village biome.

Figure 31. An example scene in the half mountain biome.
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Figure 32. An example scene in the swamp biome.

Figure 33. An example scene in the iceberg biome.
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Figure 34. An example scene in the snow mountain biome.
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Bot1 Bot2

Bricks

build a building on the playground base  

below. has 5                  , 2                   , 1                  .

Building 01:

4                  . The blueprint looks like:

Step 0:

Actions: None

FrontTop Side

Reward: 0

Bot2Bot1 Sky View

Step 1:

Actions: placeItem(bot1, 'pumpkin', new Vec3(-1,0,-1)), placeItem(bot2, 'coal_ore', new Vec3(1,0,-1)), 
placeItem(bot3, 'bricks', new Vec3(0,0,-1))

Reward: 0.5

Bot2Bot1 Sky View

Bot3 Hay Block

halfway up the mountain, following the blueprint given

Pumpkin Sea Lantern Coa Ore

has 3                   , 2                  , 2                  .

Coa Ore Orange Concrete Oak Planks

has 3                   ,

Oak Planks

Bot3

Bot3

Bot1 Bot2 Bot3

Figure 35. An example demonstration in the building task, Part I.
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Step 2:

Actions: placeItem(bot1, 'sea_lantern', new Vec3(1,1,-1)), placeItem(bot2, 'orange_concrete', new Vec3(-1,1,-1)),
placeItem(bot3, 'oak_planks', new Vec3(0,1,-1))

Reward: 1.0

Bot2Bot1 Sky ViewBot3

Figure 36. An example demonstration in the building task, Part II.

remove 

Bot1 Bot2 Bookshelf Sandstone BricksCrafting Table

blocks on the playground base  

Gold Block

in a dissert village. 

Stone Pickaxe

,           has 1has 1 .                     requires only one timestep to break                                  , but two timesteps

Clearing 01:

Stone Pickaxe Stone Pickaxe Sandstone Bricks

Bookshelf Crafting Table

. The initial playground looks like:

Step 0:

Actions:None

FrontTop Side

Reward: 0

Bot2Bot1 Sky View

to break or 

Bot1

Bot2

Figure 37. An example demonstration in the clearing task, Part I.
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Step 1:

Actions: mineBlock(bot1, new Vec3(1,0,0)), mineBlock(bot2, new Vec3(0,0,-1))

Reward: 0.5

Bot2Bot1 Sky View

Step 2:

Actions: mineBlock(bot1, new Vec3(-1,0,1)), mineBlock(bot2, new Vec3(-2,0,1))

Reward: 0.5

Step 3:

Actions: mineBlock(bot1, new Vec3(-1,0,1)), mineBlock(bot2, new Vec3(-2,0,1))

Reward: 1.0

Bot2Bot1 Sky View

Same visual observation as it requires two timesteps to break. 

Figure 38. An example demonstration in the clearing task, Part II.

sow and harvest for 2 more                      on                   on an iceberg. Some   

Bot1 Bot2

are blocked by                   .

Crops take up to three timesteps to grow from                to                  to be harvestable. Each                  gives 2                   .

has  2                 , 3                 . 

Farming 01:

has 1                 , 1                 .    The initial playground looks like:

FrontTop Side

Farmland Farmland Smooth Quartz

Age 0 Age 7

Bot1 Beetroots Bot2 Potato

Carrot

Age 7 Carrot

Carrot Carrot

Figure 39. An example demonstration in the farming task, Part I.
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Step 0:

Actions: None

Reward: 0

Bot2Bot1 Sky View

Step 1:

Actions: farm_work(bot1, new Vec3(-2,-1,-1), 'sow', 'carrot’), farm_work(bot2, new Vec3(-1,-1,1), 'sow', 'carrot')

Reward: 0

Bot2Bot1 Sky View

Step 2:
Actions: None

Reward: 0.5

Bot2Bot1 Sky View

Step 3:
Actions: farm_work(bot1, new Vec3(-2,0,-1), 'harvest’), farm_work(bot2, new Vec3(-1,0,1), 'harvest')

Reward: 1.0

Bot2Bot1 Sky View

Figure 40. An example demonstration in the farming task, Part II.
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cook for 2                        in a dissert village. To get 

Bot1 Bot2

, smelt                  with                   as fuel in                   .

Resources are on base                   or in inventory. To get , kill                     with                 . To get                  , collect with      

has 1                 . 

Smelting 01:

has 1                , 1                 , and                    . The initial playground looks like:

Step 0:

Actions: None

FrontTop Side

Reward: 0

Bot2Bot1 Sky View

Step 1:
Actions: killMob(bot1, new Vec3(2,0,-3)), putFuelFurnace(bot2, 'birch_log', new Vec3(0,0,0))

Reward: 0

Bot2Bot1 Sky View

Furnace

Bot1 Bot2

Cooked Porkchop Cooked Porkchop Porkchop Birch Log

PorkchopHay Block Pig Iron Sword Birch Log

Iron Axe

.

Iron Sword Iron Axe Porkchop Birch Log

Figure 41. An example demonstration in the smelting task, Part I.
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Step 2:
Actions: putItemFurnace(bot1, 'porkchop', new Vec3(0,0,0)), putItemFurnace(bot2, 'porkchop', new Vec3(0,0,0))

Reward: 0.5

Step 3:
Actions: obtainBlock(bot1, new Vec3(-3,0,-3))

Reward: 1.0

Bot2Bot1 Sky View

Step 4:
Actions: putFuelFurnace(bot1, 'birch_log', new Vec3(0,0,0))

Reward: 1.0

Bot2Bot1 Sky View

Step 5:
Actions: takeOutFurnace(bot1, new Vec3(0,0,0))

Reward: 1.0

Same visual observation as step 4. 

Figure 42. An example demonstration in the smelting task, Part II.
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J. Dataset Statistics Tables

Table 11. Building Task Diversity Statistics

Diversity Type Count Percentage

Action Sequences
3 7,777 51.85%
2 3,207 21.38%
4 3,091 20.61%
5 483 3.22%
6 440 2.93%

Agents
3 7,505 50.03%
2 7,493 49.97%

Scenes
ice_on_water 2,555 17.04%
mountain_half 2,553 17.03%
village 2,482 16.55%
desert_village 2,480 16.53%
snow_mountain 2,478 16.52%
swamp 2,450 16.34%

Background Types
stone 1,530 10.20%
pink_wool 1,527 10.19%
glowstone 1,522 10.15%
obsidian 1,511 10.08%
glass 1,509 10.07%
smooth_quartz 1,499 10.00%
hay_block 1,494 9.96%
gold_block 1,473 9.82%
oak_wood 1,471 9.81%
cyan_concrete 1,462 9.75%

Target Types
bricks 10,391 9.92%
sponge 5,438 5.19%
coal_ore 5,370 5.13%
grass_block 5,327 5.09%
clay 5,318 5.08%
sea_lantern 5,296 5.06%
orange_concrete 5,287 5.05%
pumpkin 5,269 5.03%
purple_wool 5,257 5.02%
gold_ore 5,247 5.01%
oak_fence 5,234 5.00%
oak_planks 5,216 4.98%
birch_log 5,184 4.95%
stone 5,182 4.95%
sandstone 5,176 4.94%
emerald_block 5,164 4.93%
iron_ore 5,160 4.93%
dirt 5,124 4.89%
end_stone 5,119 4.89%

Target Counts
6 5,653 37.69%
7 2,625 17.50%
8 2,573 17.15%
5 2,122 14.15%
10 526 3.51%
12 515 3.43%
9 496 3.31%
11 488 3.25%

Dimensional Shapes
[3, 1, 2] 3,859 25.73%
[4, 1, 2] 3,770 25.14%
[2, 3, 2] 3,695 24.63%
[2, 2, 2] 3,674 24.49%

Table 12. Clearing Task Diversity Statistics

Diversity Type Count Percentage

Action Sequences
4 4,027 27.51%
5 3,751 25.61%
6 3,270 22.32%
3 1,561 10.66%
7 1,396 9.53%
8 424 2.89%
9 133 0.91%
2 79 0.54%

Agents
2 7,358 50.28%
3 7,283 49.72%

Scenes
desert_village 3,012 20.56%
snow_mountain 2,948 20.13%
swamp 2,929 20.00%
ice_on_water 2,894 19.76%
village 2,858 19.54%

Background Types
smooth_quartz 1,405 9.59%
pink_wool 1,357 9.27%
gold_block 1,353 9.24%
oak_wood 1,334 9.10%
hay_block 1,332 9.09%
cyan_concrete 1,332 9.09%
grass_block 1,328 9.06%
glass 1,325 9.04%
glowstone 1,309 8.93%
stone 1,302 8.89%
obsidian 1,264 8.63%

Target Counts
6 4,310 29.43%
5 2,499 17.07%
4 2,436 16.64%
8 1,843 12.58%
7 1,803 12.31%
9 1,750 11.95%

Target Types
oak_fence 5,879 6.45%
grass_block 5,836 6.40%
clay 5,816 6.38%
oak_log 5,772 6.33%
sandstone 5,748 6.30%
acacia_fence 5,744 6.30%
birch_log 5,732 6.28%
bookshelf 5,726 6.28%
stone 5,709 6.26%
bricks 5,695 6.25%
crafting_table 5,684 6.23%
dirt 5,671 6.22%
cobweb 5,605 6.15%
iron_ore 5,603 6.14%
coal_ore 5,555 6.09%
anvil 5,439 5.96%

Dimensional Shapes
3 7,346 50.15%
2 7,295 49.84%

Tools
stone_pickaxe 9,329 25.51%
stone_sword 9,180 25.10%
stone_axe 9,150 24.99%
stone_shovel 8,906 24.36%
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Table 13. Farming Task Diversity Statistics

Diversity Type Count Percentage

Action Sequences
4 7,458 50.33%
5 3,731 25.17%
3 3,264 22.02%
6 270 1.82%
2 81 0.55%
7 11 0.07%

Agents
2 7,465 50.37%
3 7,350 49.63%

Scenes
snow_mountain 3,732 25.18%
swamp 3,722 25.11%
ice_on_water 3,707 25.01%
village 3,654 24.69%

Background Types
stone 2,892 19.51%
obsidian 1,549 10.46%
hay_block 1,527 10.30%
oak_wood 1,524 10.28%
cyan_concrete 1,492 10.06%
glass 1,465 9.88%
smooth_quartz 1,462 9.86%
pink_wool 1,455 9.81%
dirt 1,449 9.77%

Target Types
potato 4,972 33.56%
carrot 4,955 33.45%
wheat 4,888 32.99%

Target Counts
4 2,873 19.39%
3 2,269 15.31%
5 2,256 15.22%
6 2,151 14.51%
2 1,240 8.37%
8 1,112 7.50%
10 1,062 7.17%
7 933 6.29%
12 512 3.45%
14 407 2.75%

Table 14. Smelting Task Diversity Statistics

Diversity Type Count Percentage

Action Sequences
5 3,261 30.20%
4 3,072 28.45%
6 2,041 18.89%
3 1,824 16.88%
2 358 3.31%
7 239 2.21%
8 8 0.07%

Agents
3 5,480 50.75%
2 5,323 49.25%

Scenes
snow_mountain 2,272 21.04%
desert_village 2,257 20.92%
swamp 2,171 20.08%
ice_on_water 2,059 19.09%
village 2,044 18.87%

Table 14. (cont’d)

Diversity Type Count Percentage

Background Types
gold_block 1,014 9.22%
smooth_quartz 1,010 9.19%
cyan_concrete 995 9.02%
glowstone 981 8.92%
pink_wool 990 8.99%
glass 978 8.89%
oak_wood 987 8.98%
grass_block 977 8.88%
hay_block 968 8.80%
stone 964 8.76%
obsidian 939 8.54%

Furnace
1 5,772 53.45%
2 5,031 46.55%

Fuel Types
coal_block 999 9.58%
charcoal 962 9.22%
lava_bucket 940 9.01%
coal 921 8.84%
spruce_planks 910 8.73%
acacia_planks 906 8.69%
oak_planks 861 8.26%
birch_log 893 8.57%
acacia_log 887 8.50%
spruce_log 845 8.10%
oak_log 840 8.05%
birch_planks 839 8.04%

Goal Types
food 5,412 50.09%
item 5,391 49.91%

Target Types
glass 1,144 10.26%
gold_ingot 1,094 9.81%
stone 1,077 9.66%
smooth_sandstone 1,040 9.32%
iron_ingot 1,036 9.29%
cooked_salmon 712 6.38%
cooked_cod 708 6.35%
baked_potato 758 6.80%
cooked_mutton 664 5.95%
cooked_rabbit 648 5.81%
cooked_porkchop 668 5.99%
cooked_beef 627 5.62%
cooked_chicken 627 5.62%

Target Counts
2 3,999 37.01%
3 3,363 31.13%
1 1,909 17.68%
4 1,532 14.18%

Tools
iron_pickaxe 18,633 29.69%
iron_shovel 13,676 21.78%
iron_axe 13,453 21.43%
iron_sword 13,448 21.42%

Resource Types
red_sand 2,032 10.37%
gold_ore 1,999 10.20%
cobblestone 1,915 9.77%
sandstone 1,818 9.28%
iron_ore 1,780 9.08%
coal_ore 1,714 8.75%
acacia_planks 1,564 7.98%
oak_planks 1,503 7.67%
birch_log 1,486 7.58%
spruce_log 1,477 7.54%
oak_log 1,456 7.44%
spruce_planks 1,471 7.51%
birch_planks 1,344 6.86%
sheep 1,119 5.71%
pig 1,104 5.63%
rabbit 1,097 5.60%
chicken 1,081 5.52%
cow 700 3.57%
mushroom 675 3.44%
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K. Datasheet

Motivation

For what purpose was the dataset created? Was
there a specific task in mind? Was there a specific gap
that needed to be filled? Please provide a description.

The TeamCraft dataset was created to support develop-
ment and evaluation for multi-modal multi-agent systems in
MineCraft.

Who created the dataset (e.g., which team, research
group) and on behalf of which entity (e.g., company,
institution, organization)?

The dataset was created by the TeamCraft team.

Who funded the creation of the dataset? If there is
an associated grant, please provide the name of the
grantor and the grant name and number.

The dataset was funded by the TeamCraft team.

Any other comments?
None.

Composition

What do the instances that comprise the dataset rep-
resent (e.g., documents, photos, people, countries)?
Are there multiple types of instances (e.g., movies,
users, and ratings; people and interactions between
them; nodes and edges)? Please provide a description.

Each instance contains a ground-truth expert demonstra-
tion of a multi-agent team finishing a task in Minecraft, and
the corresponding multi-modal prompts specifying the task.

How many instances are there in total (of each type,
if appropriate)?

There are in total 57,207 instances.

Does the dataset contain all possible instances or
is it a sample (not necessarily random) of instances
from a larger set? If the dataset is a sample, then
what is the larger set? Is the sample representative
of the larger set (e.g., geographic coverage)? If so,
please describe how this representativeness was val-
idated/verified. If it is not representative of the larger
set, please describe why not (e.g., to cover a more
diverse range of instances, because instances were
withheld or unavailable).

The dataset contain all possible instances.

What data does each instance consist of? “Raw”
data (e.g., unprocessed text or images) or features? In
either case, please provide a description.

Each instance consists of a multi-modal task specification,
agents observations and expert trajectories. Each task
specification contains one raw language instruction and three
orthographic views images. Agents observations contain the
first-person view RGB images and the inventory information.

Is there a label or target associated with each in-
stance? If so, please provide a description.

N/A.

Is any information missing from individual instances?
If so, please provide a description, explaining why this
information is missing (e.g., because it was unavail-
able). This does not include intentionally removed in-
formation, but might include, e.g., redacted text.

We intentionally removed the expert demonstration in the
test set to prevent over-fitting.

Are relationships between individual instances made
explicit (e.g., users’ movie ratings, social network
links)? If so, please describe how these relationships
are made explicit.

Each instance in the dataset corresponds to an individual
task variant that belongs to one of the four task types (i.e.
building, clearing, farming, smelting). The task type is
explicitly specified in the file name.

Are there recommended data splits (e.g., training,
development/validation, testing)? If so, please provide
a description of these splits, explaining the rationale
behind them.

The dataset has been split into a training set (55,257
instances), a validation set (1,000 instances) and a test set
(950 instances). The training set is designed for model
training while the validation set is for hyperparameter tuning
and checkpoint selection. The test set is designed to evaluate
the model’s generalization capabilities across novel scenes,
novel goal states and novel agent numbers.

Are there any errors, sources of noise, or redundan-
cies in the dataset? If so, please provide a description.

None as we know.

Is the dataset self-contained, or does it link to or
otherwise rely on external resources (e.g., websites,
tweets, other datasets)? If it links to or relies on exter-
nal resources, a) are there guarantees that they will
exist, and remain constant, over time; b) are there of-
ficial archival versions of the complete dataset (i.e.,
including the external resources as they existed at the
time the dataset was created); c) are there any re-
strictions (e.g., licenses, fees) associated with any of
the external resources that might apply to a dataset

44



consumer? Please provide descriptions of all external
resources and any restrictions associated with them,
as well as links or other access points, as appropriate.

The dataset is entirely self-contained.

Does the dataset contain data that might be consid-
ered confidential (e.g., data that is protected by legal
privilege or by doctor– patient confidentiality, data that
includes the content of individuals’ non-public commu-
nications)? If so, please provide a description.

None as we know.

Does the dataset contain data that, if viewed directly,
might be offensive, insulting, threatening, or might oth-
erwise cause anxiety? If so, please describe why.

None as we know.

Does the dataset identify any subpopulations (e.g.,
by age, gender)? If so, please describe how these
subpopulations are identified and provide a description
of their respective distributions within the dataset.

No.

Is it possible to identify individuals (i.e., one or more
natural persons), either directly or indirectly (i.e., in
combination with other data) from the dataset? If so,
please describe how.

No.

Does the dataset contain data that might be consid-
ered sensitive in any way (e.g., data that reveals race
or ethnic origins, sexual orientations, religious beliefs,
political opinions or union memberships, or locations; fi-
nancial or health data; biometric or genetic data; forms
of government identification, such as social security
numbers; criminal history)? If so, please provide a
description.

None as we know.

Any other comments?
None.

Collection Process

How was the data associated with each instance
acquired? Was the data directly observable (e.g., raw
text, movie ratings), reported by subjects (e.g., survey
responses), or indirectly inferred/derived from other
data (e.g., part-of-speech tags, model-based guesses
for age or language)? If the data was reported by
subjects or indirectly inferred/derived from other data,
was the data validated/verified? If so, please describe

how.
In each data instance, the expert trajectory was generated

programmatically via a planning algorithm. The language
instruction was created by language templates. The
orthographic views images and agent observations were
collected in MineCraft.

What mechanisms or procedures were used to col-
lect the data (e.g., hardware apparatuses or sensors,
manual human curation, software programs, software
APIs)? How were these mechanisms or procedures
validated?

The data is automatically generated by running the data
collection scripts. The procedure is further verified by the
team via manual inspection.

If the dataset is a sample from a larger set, what was
the sampling strategy (e.g., deterministic, probabilistic
with specific sampling probabilities)?

N/A.

Who was involved in the data collection process
(e.g., students, crowdworkers, contractors) and how
were they compensated (e.g., how much were crowd-
workers paid)?

Only the TeamCraft team members are voluntarily
involved in the data collection process.

Over what timeframe was the data collected? Does
this timeframe match the creation timeframe of the data
associated with the instances (e.g., recent crawl of old
news articles)? If not, please describe the timeframe
in which the data associated with the instances was
created.

The data were collected between February 2024 and
September 2024.

Were any ethical review processes conducted (e.g.,
by an institutional review board)? If so, please provide
a description of these review processes, including the
outcomes, as well as a link or other access point to any
supporting documentation.

No.

Did you collect the data from the individuals in ques-
tion directly, or obtain it via third parties or other sources
(e.g., websites)?

N/A.

Were the individuals in question notified about the
data collection? If so, please describe (or show with
screenshots or other information) how notice was pro-
vided, and provide a link or other access point to, or
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otherwise reproduce, the exact language of the notifi-
cation itself.

N/A.

Did the individuals in question consent to the col-
lection and use of their data? If so, please describe
(or show with screenshots or other information) how
consent was requested and provided, and provide a
link or other access point to, or otherwise reproduce,
the exact language to which the individuals consented.

N/A.

If consent was obtained, were the consenting in-
dividuals provided with a mechanism to revoke their
consent in the future or for certain uses? If so, please
provide a description, as well as a link or other access
point to the mechanism (if appropriate).

N/A.

Has an analysis of the potential impact of the dataset
and its use on data subjects (e.g., a data protection
impact analysis) been conducted? If so, please provide
a description of this analysis, including the outcomes,
as well as a link or other access point to any supporting
documentation.

No.

Any other comments?
None.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data
done (e.g., discretization or bucketing, tokenization,
part-of-speech tagging, SIFT feature extraction, re-
moval of instances, processing of missing values)?
If so, please provide a description. If not, you may skip
the remaining questions in this section.

Yes. In each data instance, the three orthographic views
images rendered by MineCraft are manually concatenated
as one image.

Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unantici-
pated future uses)? If so, please provide a link or other
access point to the “raw” data.

No.

Is the software that was used to preprocess/clean/la-
bel the data available? If so, please provide a link or
other access point.

N/A.

Any other comments?
None.

Uses

Has the dataset been used for any tasks already? If
so, please provide a description.

The dataset is used to develop the TeamCraft-VLA
model, as described in this paper.

Is there a repository that links to any or all papers or
systems that use the dataset? If so, please provide a
link or other access point.

No.

What (other) tasks could the dataset be used for?
This dataset can be used for the development and

evaluation of multi-modal multi-agent systems in MineCraft.

Is there anything about the composition of the
dataset or the way it was collected and preprocessed/-
cleaned/labeled that might impact future uses? For
example, is there anything that a dataset consumer
might need to know to avoid uses that could result in
unfair treatment of individuals or groups (e.g., stereo-
typing, quality of service issues) or other risks or harms
(e.g., legal risks, financial harms)? If so, please provide
a description. Is there anything a dataset consumer
could do to mitigate these risks or harms?

Unknown to the authors of the datasheet.

Are there tasks for which the dataset should not be
used? If so, please provide a description.

Unknown to the authors of the datasheet.

Any other comments?
None.

Distribution

Will the dataset be distributed to third parties outside
of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created? If so, please
provide a description.

Yes, the dataset is available on the Internet.

How will the dataset will be distributed (e.g., tarball
on website, API, GitHub)? Does the dataset have a
digital object identifier (DOI)?

The dataset will be available on Huggingface. It does not
have a DOI.

When will the dataset be distributed?
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The dataset will be available online by 12/01/2024.

Will the dataset be distributed under a copyright or
other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? If so, please describe
this license and/or ToU, and provide a link or other
access point to, or otherwise reproduce, any relevant
licensing terms or ToU, as well as any fees associated
with these restrictions.

The dataset is under Apache 2.0 license.

Have any third parties imposed IP-based or other
restrictions on the data associated with the instances?
If so, please describe these restrictions, and provide a
link or other access point to, or otherwise reproduce,
any relevant licensing terms, as well as any fees asso-
ciated with these restrictions.

None as we know.

Do any export controls or other regulatory restric-
tions apply to the dataset or to individual instances? If
so, please describe these restrictions, and provide a
link or other access point to, or otherwise reproduce,
any supporting documentation.

Unknown to authors of the datasheet.

Any other comments?
None.

Maintenance

Who will be supporting/hosting/maintaining the
dataset?

The TeamCraft team will be maintaining the dataset.

How can the owner/curator/manager of the dataset
be contacted (e.g., email address)?

Email: teamcraftbench@gmail.com

Is there an erratum? If so, please provide a link or
other access point.

No.

Will the dataset be updated (e.g., to correct label-
ing errors, add new instances, delete instances)? If
so, please describe how often, by whom, and how up-
dates will be communicated to dataset consumers (e.g.,
mailing list, GitHub)?

No planned updates at the time of preparing this
datasheet.

If the dataset relates to people, are there applicable
limits on the retention of the data associated with the
instances (e.g., were the individuals in question told
that their data would be retained for a fixed period of
time and then deleted)? If so, please describe these
limits and explain how they will be enforced.

Unknown to authors of the datasheet.

Will older versions of the dataset continue to be
supported/hosted/maintained? If so, please describe
how. If not, please describe how its obsolescence will
be communicated to dataset consumers.

N/A.

If others want to extend/augment/build on/contribute
to the dataset, is there a mechanism for them to do
so? If so, please provide a description. Will these con-
tributions be validated/verified? If so, please describe
how. If not, why not? Is there a process for com-
municating/distributing these contributions to dataset
consumers? If so, please provide a description.

Others may do so and should contact the original authors
about incorporating fixes/extensions.

Any other comments?
None.
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