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Abstract— In this paper, we present a general framework
for learning social affordance grammar as a spatiotemporal
AND-OR graph (ST-AOG) from RGB-D videos of human
interactions, and transfer the grammar to humanoids to enable
a real-time motion inference for human-robot interaction (HRI).
Based on Gibbs sampling, our weakly supervised grammar
learning can automatically construct a hierarchical representa-
tion of an interaction with long-term joint sub-tasks of both
agents and short term atomic actions of individual agents.
Based on a new RGB-D video dataset with rich instances
of human interactions, our experiments of Baxter simulation,
human evaluation, and real Baxter test demonstrate that the
model learned from limited training data successfully generates
human-like behaviors in unseen scenarios and outperforms both
baselines.

I. INTRODUCTION

With the recent progress in robotics, robots now have been

able to perform many complex tasks for humans. As a result,

it is inevitable that the robots will interact with humans in

various social situations, such as service robots taking care of

elderly people, robot co-workers collaborating with humans

in a workplace, or simply a robot navigating through human

crowds. Similar to human social interactions, human-robot

interactions (HRI) must also follow certain social etiquette

or social norms, in order to make humans comfortable.

Conventional robot task planing only consider the effec-

tiveness and efficiency of performing specific tasks, such as

manufacturing, cleaning, and other activities that do not con-

sider human values or preference. However, as J. J. Gibson

pointed out, “The richest and most elaborate affordances

of the environment are provided by ... other people.” [1].

A robot should reason the intention and feeling of humans

who are near it and only perform socially appropriate actions

while trying to achieve its own goal.

Therefore, in this paper, we focus on learning social affor-

dances in human daily activities, namely action possibilities

following basic social norms, from human interaction videos.

More specifically, we are interested in the following three

general types of human-robot interactions that we believe are

most dominant interactions for robots: i) social etiquette, e.g.,

greeting, ii) collaboration, e.g., handing over objects, and iii)

helping, e.g., pulling up a person who falls down. In addition,

we also aim at developing a real-time motion inference to
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Fig. 1. The framework of our approach.

enable natural human-robot interactions by transferring the

social affordance grammar.

To this end, we propose a new representation for social

affordances, i.e., social affordance grammar as a spatiotem-

poral AND-OR graph (ST-AOG), which encodes both impor-

tant latent sub-goals for a complex interaction and the fine

grained motion grounding such as human body gestures and

facing directions. We learn the grammar from RGB-D videos

of human interactions as Fig. 1 depicts. Our grammar model

also enables short-term motion generation (e.g., raising an

arm) for each agent independently while providing long-term

spatiotemporal relations between two agents as sub-goals to

achieve for both of them (e.g., holding the right hand of each

other), which simultaneously maximizes the flexibly of our

motion inference (single agent action) and grasps the most

important aspects of the intended human-robot interactions

(sub-goals in joint tasks).

Contributions:
1) A general framework for weakly supervised learning of

social affordance grammar as a ST-AOG from videos;

2) A real-time motion inference based on the ST-AOG for

transferring human interactions to HRI.

II. RELATED WORK

Affordances. In the existing affordance research, the do-

main is usually limited to object affordances [2], [3], [4], [5],

[6], [7], [8], [9], e.g., possible manipulations of objects, and

indoor scene affordances [10], [11], e.g., walkable or stand-

able surface, where social interactions are not considered.

[12] is the first to propose a social affordance representation

for HRI. However, it could only synthesize human skeletons

rather than control a real robot, and did not have the ability

to generalize the interactions to unseen scenarios. We are

also interested in learning social affordance knowledge, but

emphasize on transferring such knowledge to a humanoid in

a more flexible setting.

Structural representation of human activities. In recent

years, several structural representations of human activities

for the recognition purposes have been proposed for human

action recognition [13], [14], [15], [16] and for group activity
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Fig. 3. (a) The joint angles of the arm of a Baxter robot (from
http://sdk.rethinkrobotics.com/wiki/Arms), which are directly mapped to a
human’s arm (b). The additional angles (e.g., w2) can be either computed
by inverse kinematics or set to a constant value.

recognition [17], [18], [19], [20], [21], [22], [23]. There also

have been studies of robot learning of grammar models [24],

[25], [26], but they were not aimed for HRI.

Social norms learning for robots. Although there are

previous works on learning social norms from human demon-

strations aimed for robot planning, they mostly focused on

relatively simple social scenarios, such as navigation [27],

[28]. On the contrary, we are learning social affordances as

a type of social norm knowledge for much more complex

interactions, which involve the whole body movements.

III. FRAMEWORK OVERVIEW

The framework of our approach illustrated in Fig. 1 can

be outlined as follows:

Human videos. We collect RGB-D videos of human in-

teractions, where human skeletons were extracted by Kinect.

We use the noisy skeletons of these interactions as the input

for the affordance learning.

Social affordance grammar learning. Based on the

skeletons from human interaction videos, we design a Gibbs

sampling based weakly supervised learning method to con-

struct a ST-AOG grammar as the representation of social

affordances for each interaction category.

Real-Time motion inference. For transferring human

interactions to human-robot interactions, we propose a real-

time motion inference algorithm by sampling parse graphs

as hierarchical plans from the learned ST-AOG and generate

human-like motion accordingly for a humanoid to interact

with a human agent.

IV. REPRESENTATION

We represent the social affordance knowledge as stochastic

context sensitive grammar using a spatiotemporal AND-OR

graph (ST-AOG), as shown in Fig. 2. The key idea is to

model the joint planning of two agents on top of independent

action modeling of individual agents. Following the Theory

of Mind (ToM) framework, a ST-AOG defines the grammar

of possible robotic actions (agent 2) at a specific moment

given the observation of agent 1’s actions as the belief, the

joint sub-tasks as sub-goals, and the interaction category as

the overall goal.

We first define a few dictionaries for the grammar model

encoding the key elements in the social affordances. We

constrain the human-robot interactions in a set of categories

C. Dictionaries of arm motion attributes AM and relation

attributes AR are specified and shared across all types of

interactions. Also, for each category c, there are dictionaries

of latent joint sub-tasks J c, latent atomic actions of agent

i, Sc
i , where Sc

i are shared by different joint sub-tasks

within c. Note that joint sub-tasks and atomic actions are not

predefined labels but rather latent symbolic concepts mined

from human activity videos, which boosts the flexibility of

our model and requires much less human annotation efforts.

There are several types of nodes in our ST-AOG: An AND

node defines a production rule that forms a composition of

nodes; an OR node indicates stochastic switching among

lower-level nodes; the motion leaf nodes show the obser-

vation of agents’ motion and their spatiotemporal relations;

attribute leaf nodes provide semantics for the agent motion

and spatiotemporal relations, which can greatly improve the

robot’s behavior. In our model, we consider four arm motion

attributes, i.e., moving left/right arm, static left/right arm,

and the relation attributes include approaching and holding
between two agents’ hands (possibly an object).

The edges E in the graph represent decomposition relations

between nodes. At the top level, a given interaction category

leads to a selection of joint sub-tasks as the sub-goal to

achieve for the given moment. A joint sub-task further leads

to the atomic action selection of two agents and can also be

bundled with relation attributes. An atomic action encodes

a consistent arm motion pattern, which may imply some

arm motion attributes of agent 2 for the purpose of motion

inference. Some of the nodes in the dashed box are connected

representing the “followed by” relations between joint sub-

tasks or atomic actions with certain transition probabilities.

The motion grounding is designed for motion transfer

from a human to a humanoid, which entails social etiquette

such as proper standing distances and body gestures. As

shown in Fig. 3, the pose of a human arm at time t can

be conveniently mapped to a robot arm by four degrees:

θt = 〈s0, s1, e0, e1〉. The wrist angles are not considered

due to the unreliable hand gesture estimation from Kinect.

Thus, in an interaction whose length is T , there is a sequence

of joint angles, i.e., Θil = {θtil}t=1,··· ,T for agent i’s limb

l, where l = 1 stands for left arm and l = 2 indicates right

arm. Similarly the hand trajectories Hil = {ht
il} are also

considered in order to have a precise control of the robot’s

hands. We model the spatiotemporal relations with agent 2’s

the relative facing directions, O = {ot}t=1,··· ,T , and relative

base positions (in the top-down view), X = {xt}t=1,··· ,T ,

by setting the facing directions and base joint positions of
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Fig. 4. A sequence of parse graphs in a shaking hands interaction, which yields the temporal parsing of joint sub-tasks and atomic actions depicted by
the colored bars (colors indicate the labels of joint sub-tasks or atomic actions).

agent 1 as references respectively. We also consider the

distances between two agents’ hands, Dll′ = {dt
ll′}t=1,··· ,T

(l is the limb of agent 1 and l′ is the limb of agent 2) for

the relations. The distances between agent 2’s hands and

an object can be included if an object is involved. For an

interaction instance, we then define the action grounding

of agent i to be ΓA
i = 〈Θ〉, and the relation grounding of

both agents to be ΓR = 〈O,X,D〉, where Θ = {Θil}l=1,2,

H = {Hil}l=1,2, and D = {Dll′}l,l′∈{1,2}. Hence, the

overall motion grounding is Γ = 〈{ΓA
i }i=1,2,Γ

R〉.
Finally, the ST-AOG of interactions C is denoted by G =

〈C, {J c}c∈C , {Sc
i }c∈C,i=1,2,AM ,AR,Γ, E〉. At any time t,

we use a sub-graph of the ST-AOG, i.e., a parse graph pgt =
〈c, jt, st1, st2〉, to represent the actions of individual agents

(st1, st2) as well as their joint sub-tasks (jt) in an interaction

c. Note that the attributes are implicitly included in the parse

graphs since they are bundled with labels of jt and st2.

For an interaction in [1, T ], we may construct a sequence

of parse graphs PG = {pgt}t=1,··· ,T to explain it, which

gives us three label sequences: J = {jt}t=1,··· ,T , S1 = {st1}
and S2 = {st2}. By merging the consecutive moments with

the same label of joint sub-tasks or atomic actions, we obtain

three types of temporal parsing, i.e., T J = {τJk }k=1,··· ,KJ ,

T S
1 = {τS1k}k=1,··· ,KS

1
, and T S

2 = {τS2k}k=1,··· ,KS
2

for

the joint sub-tasks and the atomic actions of two agents

respectively, each of which specifies a series of consecutive

time intervals where the joint sub-task or the atomic action

remains the same in each interval. Hence, in τJk = [t1k, t
2
k],

jt = j(τJk ), ∀t ∈ τJk , and for agent i, sti = si(τ
S
ik), ∀t ∈ τSik

in τS1k = [t1ik, t
2
ik]. Fig. 4 shows an example of the temporal

parsing from the parse graph sequence. Note the numbers of

time intervals of these three types of temporal parsing, i.e.,

KJ , KS
1 , and KS

2 , may be different. Such flexible temporal

parsing allows us to model long-term temporal dependencies

among atomic actions and joint sub-tasks.

V. PROBABILISTIC MODEL

We propose a probabilistic model for our social affordance

grammar model.

Given the motion grounding, Γ, the posterior probability

of a parse graph sequence PG is defined as

p(PG|Γ) ∝ p({ΓA
i }i=1,2|PG)︸ ︷︷ ︸

arm motion likelihood

p(ΓR|PG)︸ ︷︷ ︸
relation likelihood

p(PG)︸ ︷︷ ︸
parsing prior

. (1)

Conditioned on the temporal parsing of atomic actions

and joint sub-tasks, the likelihood terms model the arm

motion and the relations respectively, whereas the parsing

prior models the temporal dependencies and the concurrency

among joint sub-tasks and atomic actions. We introduce these

three terms in the following subsections.

A. Arm Motion Likelihood
First, we define three types of basic potentials that are

repeatedly used in the likelihood terms:
1) Orientation potential ψo(θ). This potential is a von

Mises distribution of the orientation variable θ. If θ has

multiple angular variables, e.g., the four joint angles θ =
〈s0, s1, e0, e1〉, then the potential is the product of the von

Mises distributions of these individual angular variables.
2) Three-dimensional motion potential ψ3v(x). Assum-

ing that spherical coordinate of x is (r, θ, φ), the poten-

tial is characterized by three distributions, i.e., ψ3v(x) =
p(r)p(θ)p(φ), where the first one is a Weibull distribution

and the remaining are von Mises distributions.
3) Two-dimensional position potential ψ2v(x). We fit a

bivariate Gaussian distribution for x in this potential.
For joint angles and hand positions in an atomic action,

we are interested in their final statuses and change during

the atomic action. Thus, for the limb l of agent i in the

interval τSik assigned with atomic action si(τ
S
ik) ∈ S� such

that sti = si(τ
S
ik), ∀t ∈ τSik, the arm motion likelihood

p(Θil, Hil|τSik, si(τSik))
∝ ψo(θ

t′
il − θtil)︸ ︷︷ ︸

joint angles’s change

ψo(θ
t′
il)︸ ︷︷ ︸

final joint angles

ψ3v(h
t′
il − ht

il)︸ ︷︷ ︸
hand movement

ψ3v(h
t′
il)︸ ︷︷ ︸

final hand position

,

(2)

where t = t1ik and t′ = t2ik are the starting and ending

moments of τSik. Assuming independence between the arms,

the arm motion likelihood for agent i in τSik is

p(ΓA
i |τSik, s(τSik)) =

∏
l

p(Θil, Hil|τSik, si(τSik)), (3)

and the arm motion likelihood for the entire interaction is

p(ΓA
i |PG) =

∏
k

p(ΓA
i |τSik, s(τSik)). (4)

Finally, the overall arm motion likelihood is the product

of two agents’ arm motion likelihood, i.e.,

p({ΓA
i }i=1,2|PG) =

∏
i

p(ΓA
i |PG). (5)
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B. Relation Likelihood

Relation likelihood models the spatiotemporal patterns

hidden in facing directions O, base positions X , and the

distances between two agents’ hands during a joint sub-task.

In a interval τJk with the same joint sub-task label j(τJk )
such that jt = j(τJk ), ∀t ∈ τJk , the relation likelihood is

p(ΓR|τJk , j(τJk )) ∝ ψo(o
t′)︸ ︷︷ ︸

facing direction

ψ2v(x
t′)︸ ︷︷ ︸

base position

·
∏
l,l′

ψ3v(d
t′
ll′)︸ ︷︷ ︸

final hand distance

ψ3v(d
t′
ll′ − dtll′)︸ ︷︷ ︸

distance change

,

(6)

where τJk starts at t = t1k and ends at t′ = t2k.

Hence, the overall relation likelihood can be written as

p(ΓR|PG) =
∏
k

p(ΓR|τJk , j(τJk )). (7)

C. Parsing Prior

The prior of a sequence of parse graphs is defined by the

following terms:

p(PG)=
∏
k

p
(
|τJk | | j(τJk )

)

︸ ︷︷ ︸
duration prior of joint sub-tasks

·
∏
k

p
(
|τS1k| | s1(τS1k)

)∏
k

p
(
|τS2k| | s2(τS2k)

)

︸ ︷︷ ︸
duration prior of atomic actions∏

k>1

p
(
s1(τ

S
1k)|s(τS1k−1)

)

︸ ︷︷ ︸
action transition for agent 1

∏
k>1

p
(
s2(τ

S
2k)|s(τS2k−1)

)

︸ ︷︷ ︸
action transition for agent 2

·
∏
t

p(st1|jt)p(sj2|jt)
︸ ︷︷ ︸

concurrency

∏
k>1

p
(
j(τJk )|j(τJk−1)

)

︸ ︷︷ ︸
joint sub-task transition

,

(8)

where the duration priors follow log-normal distributions and

the remaining priors follow multinomial distributions.

VI. LEARNING

The proposed ST-AOG can be learned in a weakly super-

vised manner, where we only specify the generic dictionaries

of attributes and the sizes of the dictionaries of joint sub-tasks

and atomic actions for each interaction. Given N training

instances, Γ = {Γn}n=1,··· ,N , of an interaction category,

where Γn = 〈{ΓA
i }i=1,2,Γ

R
i 〉 is the motion grounding of

instance n, the goal of learning is to find the optimal parsing

graph sequence, PGi, for each instance by maximizing the

posterior probability defined in (1); then the ST-AOG is

easily constructed based on the parse graphs.

It is intractable to search for the optimal parsing of atomic

actions and joint sub-tasks simultaneously, which will take

an exponential amount of time. Instead, we first 1) parse

atomic actions for each agent independently and then 2) parse

joint sub-tasks. Based on the likelihood distributions from

the parsing results, we may 3) further obtain the implied

attributes for each type of joint sub-tasks and atomic actions.

We introduce the details in the rest of this section.

s0(left)
s1(left)
e0(left)
e1(left)
s0(right)
s1(right)
e0(right)
e1(right)

Fig. 5. The curves show how the joint angles of agent 2’s two arms change
in an shaking hands interaction. The black dashed indicate the interval
proposals from the detected turning points.

A. Atomic Action Parsing

We expect the motion in an atomic action to be consistent.

Since the arm motion is characterized by joint angles and

hand positions, the velocities of joints and hand movements

should remain the same in an atomic action. Following this

intuition, we propose the time intervals for the atomic actions

of an agent by detecting the turning points of the sequences

of joint angles (see Fig. 5), which will naturally yields time

intervals of atomic actions. To make the angles directly

comparable, they are all normalized to the range of [0, 1].
To detect such turning points, we introduce a entropy

function for a sequence {xt}, i.e., E(t, w), where t is the

location of interest and w is the window size. To compute

E(t, w), we first count the histogram of the changes between

consecutive elements, i.e., xt − xt−1 in the sub-sequence

{xt′}t′=t−w,,t+w, and then E(t, w) is set to be the entropy of

the histogram. By sliding windows with different sizes (w =
2, 5, 10, 15), we may detect multiple locations with entropy

that is higher than a given threshold. By non-maximum

suppression, the turning points are robustly detected.

After obtaining the time intervals, we assign optimal

atomic action labels to each interval by Gibbs sampling. At

each iteration, we choose an interval τ and sample a new

label s for it based on the following probability:

s ∼ p(ΓA
i | τ, s)p(τ, s | T S

i \τ, Si\{sti}t∈τ ). (9)

Here, p(ΓA
i | τ, s) is the likelihood in (3), and based on the

parsing prior in (8), the labeling prior is computed as

p(τ, s | T S
i \τ, Si\{sti}t∈τ ) = p(s | s′)p(s′′ | s)p(|τ | | s),

(10)

where s′ and s′′ are the preceding and following atomic

action labels in the adjacent intervals of τ . If either of them

is absent, the corresponding probability is then set to be 1.

For each new label assignment, the parameters of the related

likelihood and prior distributions should be re-estimated. To

ensure the distinctness between adjacent intervals, s can not

be the same labels of the adjacent intervals.

Therefore, after randomly assigning labels for the intervals

as initialization, we conduct multiple sweeps, where in

each sweep, we enumerate each interval and sample a new

label for it based on (9). The sampling stops when the

labeling does not change after the last sweep (convergence).

In practice, the sampling can converge within 100 sweeps

coupled with a simulated annealing.

B. Joint Sub-Task Parsing

The joint sub-task parsing is achieved using a similar

approach as atomic action parsing. We first propose the time
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Fig. 6. The learned ST-AOG for the Shake Hands interaction (the motion grounding is not drawn in this figure due to the space limit). The numbers
under AND nodes are the labels of joint sub-tasks or atomic actions. The edges between the atomic actions show the “followed by” temporal relations and
their colors indicate which atomic actions are the edges’ starting point. Similarly, the joint sub-tasks are also connected by edges representing the temporal
dependencies between them. There is an example of each atomic actions from our training data, where the skeletons are overlaid with colors from light
to dark to reflect the temporal order. The attributes that are not bundled to any atomic action or joint sub-task are not shown here.

intervals by detecting turning points based on the normalized

sequences of O, X , and D. Then the labeling can also be

optimized by a Gibbs sampling, where at each iteration, we

sample a new joint sub-task label j for an interval τ by

j ∼ p(ΓR | τ, j)p(τ, j | T J\τ, SJ\{jt}t∈τ ), (11)

where p(ΓR | τ, j) is defined in (6) and the prior probability

is derived from (8) as

p(τ, j | T J\τ, SJ\{jt}t∈τ )

=p(j | j′)p(j′′ | j)p(|τ | | j)
∏
t∈τ

p(st1 | j)p(st2 | j). (12)

Similar to (9), j′ and j′′ in the above prior probability are

the preceding and following intervals’ joint sub-task labels.

The corresponding transition probability is assumed to be

1 if either of the adjacent interval does not exist. We also

constrain j to be different from the j′ and j′′ if they exist.

C. Constructing ST-AOG

After the previous two Gibbs sampling processes, the

parameters of our probabilistic model are all estimated based

on the parse graph sequences {PGn}n=1,··· ,N . The ST-AOG

of category c is then constructed by the following three steps:

Initialization. We start form a “complete” graph, where

each non-leaf node is connected to all related lower level

nodes (e.g., all joint sub-tasks, all atomic actions of the

corresponding agent, etc.), except attribute leaf nodes.

Edge removal. Any edge between two joint sub-task

nodes or two atomic action nodes is removed if it has a

transition probability lower than a threshold (0.05). For each

joint sub-task node, remove the edges connecting the OR

node of agent i to the atomic actions whose concurrency

priors under the joint sub-task are lower than 0.1. Note that

we use these thresholds for all interactions.

Attributes bundling. Motion attributes: For each type of

atomic action s of agent i, a moving attribute is bundled

to a limb if the mean of the corresponding hand movement

distribution specified in (2) is lower than a threshold (we use

0.2 m in practice); otherwise, a static attribute is bundled to

the limb instead. Relation attributes: A type of joint sub-task

will be associated with a holding attribute between a pair

of hands (or a hand and an object) if the mean final hand

distance is lower than 0.15 m and the mean hand distance’s

change is lower than 0.1 m according to the corresponding

distributions in (6). If only the mean final hand distance

meets the standard, an approaching will be attached. For the

case of multiple qualifying pairs for a hand, the one with the

shortest mean distance is selected.

Fig. 6 is a learned ST-AOG for Shake Hands interactions.

It can be seen that our learning algorithm indeed mines the

critical elements of the interactions and clearly represents

their relations through the structure of the ST-AOG.

VII. REAL-TIME MOTION INFERENCE

If we replace agent 2 with a humanoid, we can therefore

design a real-time motion inference enabling human-robot

interaction based on the learned ST-AOG by sampling parse

graphs and controlling the robot’s motion accordingly.

For this, we propose two levels of inference procedures:

1) robot motion generation given the parse graphs, which is

essentially transferring the socially appropriate motion from

agent 2 in the grammar model to a humanoid; 2) parse graph

sampling given the observation of the human agent’s actions

and the relation between the human agent and the robot

according to the learned social affordance grammar.

A. Robot Motion Generation

As shown in Fig. 3, we may use the motion grounding of

agent 2 for the robot by joint mapping. The robot motion can

be generated by sampling agent 2’s base position xt, facing

direction (i.e., base orientation of the robot) ot, joint angles

{θ2l}l=1,2, and hand positions (i.e., end effector positions)

{ht
2l}l=1,2 at each time t based on the motion history of

agent 2, ΓA
2 (t−1), and the spatiotemporal relations, ΓR(t−

1), upon t − 1 as well as the agent 1’s motion, ΓA
1 (t), and

parse graphs, PG(t) = {pgτ}τ=1,··· ,t, upon t.
Since the arm motion is relative to the base position in our

motion grounding, we first sample xt and ot w.r.t. the relative

position and facing direction likelihood in (6), the likelihood

probabilities of which must be higher than a threshold (0.05
for xt and 0.3 for ot). To avoid jitter, we remain the previous

base position and rotation if they still meet the criteria at t.
Then we update the joint angles for each robot arm.

Without the loss of generality, let us consider a single arm
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Algorithm 1 Parse Graph Sampling

Input: The initial motion of two agents in [1, T0], i.e., Γ(T0)
1: Infer PG(T0) by maximizing the posterior probability in (1)
2: Let t← T0 + 1
3: repeat
4: Γ′ = Γ(t− 1) ∪ {θt1l}l=1,2 ∪ {ht

1l}l=1,2

5: Infer current atomic action of agent 1 by
st1 = argmaxs p(PG(t− 1) ∪ {s} | Γ′)

6: for all jt ∈ J , st2 ∈ Sc
2 that are compatible with st1 do

7: pgt ← 〈jt, st1, st2〉
8: PG(t)← PG(t− 1) ∪ {pgt}
9: Sample a new robot status at t, i.e., xt, ot, {θt2l} and

{ht
2l}, as introduced in Sec. VII-A

10: Γ(t)← Γ(t− 1) ∪ {θtil,ht
il}i,l=1,2 ∪ {xt} ∪ {ot}

11: Compute the posterior probability p(PG(t) | Γ(t))
12: end for
13: Choose the pgt and the corresponding new robot status

that yield highest posterior probability to execute and
update PG(t) and Γ(t) accordingly

14: t← t+ 1
15: until t > T

l ∈ {1, 2}. According to the atomic action st2, we may

sample desired joint angles θ̂t2l and hand position ĥt
2l w.r.t the

corresponding likelihood terms in (2). Since we do not model

the wrist orientations, the desired ŵ0, ŵ1, ŵ2 are always

set to be 0 if the robot arm has these degrees of freedom

(Fig. 3a). If current joint sub-task entails an “approaching”

or “holding” attribute for this limb, the desired hand position

is set to the position of the target hand or object indicated

by the attribute instead. To enforce the mechanical limits and

collision avoidance, we minimize a loss function to compute

the final joint angels θtil for the robot arm:

min
θ∈Ωθ

ωh||fl(θ)− ĥt
2l||22︸ ︷︷ ︸

hand position loss

+ωa||θ − θ̂t2l||22︸ ︷︷ ︸
joint angle loss

+ωs||θ − θt−1
il ||22︸ ︷︷ ︸

smoothness loss

,

(13)

where fl(θ) is the end effector position of θ based on

the forward kinematics of the robot arm l; Ωθ is the joint

angle space that follows the mechanical design (angle ranges

and speed limits of arm joints) and the collision avoidance

constraints, and ωh, ωa, ωs are weights for the three types

of loss respectively. By assigning different weights, we can

design three control modes that are directly related to the

attributes in ST-AOG:

1) Hand moving mode: if “approaching” or “holding”

attributes are present in the current joint sub-task, we may

use a larger ωh to ensure an accurate hand position;

2) Static mode: if the first case does not hold and the

atomic action has a “static” attribute for the limb, then ωs

should be much larger than ωh and ωa;

3) Motion mimicking mode: if none of the above two

cases hold, we emphasize on joint angle loss (i.e., a large

ωa) to mimic the human arm motion.

In practice, we set the large weight to be 1 and the other

two may range from 0 to 0.1.

B. Parse Graph Sampling

The Parse graph sampling algorithm is sketched in Alg. 1.

The basic idea is to first recognize the action of agent 1. Then

TABLE I

A SUMMARY OF OUR NEW DATASET (NUMBERS OF INSTANCES).

Category Scenario 1 Scenario 2 Scenario 3 Scenario 4 Total

Shake Hands 19 10 0 0 29

High Five 18 7 0 23 48

Pull Up 21 16 9 0 46

Wave Hands 0 28 0 18 46

Hand Over 34 6 8 7 55

TABLE II

MEAN JOINT ANGLE DIFFERENCE (IN RADIUS DEGREE) BETWEEN THE

SIMULATED BAXTER AND THE GROUND TRUTH SKELETONS.

Method Shake Hands High Five Pull Up Wave Hands Hand Over

B1 0.939 0.832 0.748 0.866 0.867

B2 0.970 0.892 0.939 0.930 0.948

Ours 0.779 0.739 0.678 0.551 0.727

TABLE III

HUMAN SUBJECTS’ RATINGS OF BAXTER SIMULATION GENERATED BY

THE THREE METHODS BASED ON THE TWO CRITERIA.

Source Shake Hands High Five Pull Up Wave Hands Hand Over

Q1
B1 3.22 ± 1.30 2.13 ± 1.09 2.75 ± 0.91 2.59 ± 1.20 2.19 ± 1.12
B2 2.14 ± 0.56 3.07 ± 1.22 2.11 ± 0.94 2.47 ± 0.69 1.48 ± 0.52

Ours 4.45 ± 0.61 4.79 ± 0.41 4.53 ± 0.61 4.82 ± 0.52 4.63 ± 0.53

Q2
B1 2.89 ± 0.99 2.38 ± 0.96 2.75 ± 0.55 2.00 ± 1.17 2.45 ± 0.71
B2 2.14 ± 0.83 2.93 ± 0.80 2.32 ± 1.00 1.60 ± 0.69 1.82 ± 0.63

Ours 4.20 ± 0.75 4.17 ± 0.62 4.25 ± 0.79 4.65 ± 0.72 3.97 ± 0.61

following the ST-AOG, we may enumerate all possible joint

sub-tasks and atomic actions of agent 2 that are compatible

with agent 1’s atomic action, and sample a new robot status

for each of them. Finally, we choose the one with the highest

posterior probability to execute. Note that the facing direction

of an agent is approximated by his or her moving direction

(if not static) or the pointing direction of feet (if static).

VIII. EXPERIMENTS

Dataset. There are two existing RGB-D video datasets for

human-human interactions [29], [12], where the instances

within the same category are very similar. To enrich the

activities, we collected and compiled a new RGB-D video

dataset on top of [12] using Kinect v2 as summarized in

Table I, where Wave Hands is a new category and the

instances in scenario 1 of the other categories are from [12].

For Pull Up, the first 3 scenarios are: A2 (agent 2) stands

while A1 (agent 1) is sitting 1) on the floor or 2) in a

chair; 3) A1 sits in a chair and A2 approaches. For the other

categories, the four scenarios stand for: 1) both stand; 2) A1

stands and A2 approaches; 3) A1 sits and A2 stands nearby;

4) A1 sits and A2 approaches. In the experiments, we only

use three fourths of the videos in scenario 1 (for Wave Hands,

it is scenario 2) as training data, and the remaining instances

are used for testing. We plan to release the dataset.

Baselines. We compare our approach with two baselines

adopted from related methods, extending these method fur-

ther to handle our problem. The first one (B1) uses the

method proposed in [12] to synthesize human skeletons to

interact with the given human agent, from which we compute

the desired base positions, joint angles and hand positions

for the optimization method defined in (13). Since [12] only

models the end positions of the limbs explicitly and do
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Fig. 7. Qualitative results of our Baxter simulation.

Fig. 8. Qualitative results of the real Baxter test.

not specify multiple modes as ours do, we use it with the

weights of hand moving mode. The second baseline (B2)

uses our base positions and orientations but solve the inverse

kinematics for the two arms using an off-the-shelf planner,

i.e., RRT-connect [30] in MoveIt! based on the desired hand

positions from our approach.

A. Experiment 1: Baxter Simulation

We first implement a Baxter simulation and compare the

simulated robot behaviors generated from ours and the two

baselines. For each testing instance, we give the first two

frames of skeletons of two agents as the initialization; we

then update the human skeleton and infer the new robot status

accordingly at a rate of 5 fps in real-time. For Hand Over,

we assume that the cup will stay in the human agent’s hand

unless the robot hand is close to the center of the cup (< 10

cm) for at least 0.4 s. Note that the planner in B2 is extremely

slow (it may take more than 10 s to obtain a new plan), so we

compute B2’s simulations in an offline fashion and visualize

them at 5 fps. Ours and B1 can be run in real-time.

Fig. 7 shows a simulation example for each interaction.

More results are included in the video attachment. From the

simulation results, we can see that the robot behaviors (stand-

ing positions, facing directions and arm gestures) generated

by ours are more realistic than the ones from baselines. Also,

thanks to the learned social grammar, the robot can adapt

itself to unseen situations. E.g., human agents are standing

in the training data for “High Five”, but the robot can still

perform the interaction well when the human agent is sitting.

We also compare the mean joint angle difference between

the robot and the ground truth (GT) human skeletons (i.e.,

agent 2) captured from Kinect as reported in Table II, which

is one of the two common metrics of motion similarity [31]

(the other one, i.e., comparing the end-effector positions,

is not suitable in our case since humans and robots have

different arm lengths). Although the robot has a different

structure than humans’, ours can still generate arm gestures

that are significantly closer to the GT skeletons than the ones

by baselines are.

B. Experiment 2: Human Evaluation

To evaluate the quality of our human-robot interactions, we

showed the simulation videos of three methods to 12 human

subjects (UCLA students) who did not know that videos were

from different methods. Subjects first watched two RGB

videos of human interactions per category. Then for each test-

ing instance, we randomly selected one method’s simulation

to a subject. The subjects only watched the assigned videos
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once and rated them based on two criteria: i) whether the

purpose of the interaction is achieved (Q1), and ii) whether

the robot’s behavior looks natural (Q2). The ratings range

from 1 (total failure/awkward) to 5 (successful/human-like).

The mean ratings and the standard deviations are summa-

rized in Table III. Our approach outperforms the baselines

for both criteria and has smaller standard deviations, which

manifests its advantages on accurately achieving critical

latent goals (e.g., holding hands) while keeping human-like

motion. The rigid representation and failing to learn explicit

hand relations affect B1’s ability to adapt the robot to various

scenarios. It also appears that only using a simple IK (B2)

is probably insufficient: its optimization is only based on the

current target position, which often generate a very long path

and may lead to an awkward gesture. This makes the future

target positions hard to reach as the target (e.g., a human

hand) is constantly moving.

C. Experiment 3: Real Baxter Test

We test our approach on a Baxter research robot with a

mobility base. A Kinect sensor is mounted on the top of

the Baxter’s head to detect and track human skeletons. To

compensate the noise from Kinect, we further take advantage

of the pressure sensors on the ReFlex TakkTile Hand (our

Baxter’s right hand) to detect holding relations between

the agents’ hands. Although the arm movement is notably

slower than the simulation due to the mechanical limits, the

interactions are generally successful and reasonably natural.

Since we only need joints on the upper body, the estima-

tion of which is relatively reliable, the noisy Kinect skeletons

usually do not greatly affect the control. In practice, temporal

smoothing of the skeleton sequences is also helpful.

IX. CONCLUSIONS

We propose a general framework of learning social affor-

dance grammar as a ST-AOG from human interaction videos

and transferring such knowledge to human-robot interactions

in unseen scenarios by a real-time motion inference based on

the learned grammar. The experimental results demonstrate

the effectiveness of our approach and its advantages over

baselines. In the future, it is possible to integrate a language

model into the system to achieve verbal communications

between robots and humans. In addition, human intention

inference can also be added to the system.
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