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Abstract— Human collaborators can effectively communicate
with their partners to finish a common task by inferring each
other’s mental states (e.g., goals, beliefs, and desires). Such
mind-aware communication minimizes the discrepancy among
collaborators’ mental states, and is crucial to the success in hu-
man ad-hoc teaming. We believe that robots collaborating with
human users should demonstrate similar pedagogic behavior.
Thus, in this paper, we propose a novel explainable AI (XAI)
framework for achieving human-like communication in human-
robot collaborations, where the robot builds a hierarchical
mind model of the human user and generates explanations
of its own mind as a form of communications based on
its online Bayesian inference of the user’s mental state. To
evaluate our framework, we conduct a user study on a real-time
human-robot cooking task. Experimental results show that the
generated explanations of our approach significantly improves
the collaboration performance and user perception of the robot.
Code and video demos are available on our project website:
https://xfgao.github.io/xCookingWeb/.

I. INTRODUCTION

In recent years, there has been a great amount of success
on building powerful artificial intelligence (AI) systems to
solve complex tasks [1], [2]. As highly autonomous robots
are being developed, there is a growing need to make
them quickly understood to avoid consequences caused by
misunderstanding [3]. However, existing robot systems are
often not human compatible – i) they do not understand
humans’ minds and ii) they are just black boxes to humans
too. Such limits prevent the AI systems from working with
humans effectively.

Inspired by studies on the Theory-of-Mind [4], [5], we
believe that a crucial step towards building human compat-
ible systems, particularly for human-robot collaborations, is
to understand human activities and their underlying mental
state. As a motivating example, consider a robot chef helping
a human make salads in the kitchen shown in Figure 1.
Even when the robot understands how to perform the task
on its own, it would be challenging to finish the task
efficiently without having a shared mental model with its
human partner. For making the salad, the robot believes the
plate should be picked up by the user while the human
agent believes the other way. If the robot can identify
such discrepancies between different agents’ mental states,
it can generate explanations to mitigate the differences and
encourage the correction of sub-optimal human behavior.
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Fig. 1: The task making salad requires team members to take three
lettuce from the basket and cut each one with a knife, before it can
be put into the plate and served. After the first lettuce has been cut,
the robot is cutting the second one. The robot can identify human’s
sub-optimal behavior (taking new lettuce from the basket) before
generating explanations to the human.

To this end, we propose a framework that improves
human-robot teaming performance through explanations.
With a graph-based representation, the robot can maintain
the mental states of both team members during a highly-
structured collaborative task. The robot can then generate ex-
planations when difference between mental states is detected,
which implies sub-optimal user behaviors. In summary, the
main contribution of this paper is three-fold:
• We design a real-time collaborative cooking game as

an online user study system and develop an evaluation
protocol, which can be accessed from our website.

• We propose to understand complex human activities using
an action parsing algorithm based on an And-Or graph
task representation, which allows the robot to infer human
mental states in complex environments.

• Based on the inferred human mental state, we propose
an explanation generation framework. Experiments on a
real-time cooking task show that our approach successfully
improves user perception of the robot and leads to better
human-robot collaborations.

II. RELATED WORK

Human-aware planning. Designing robots that can work
with humans has been widely studied by researchers. Most
of the prior works hope to create robots to better under-
stand and adapt to human collaborators. [6] evaluates a
collaborative task allocation framework based on a Bayesian
inference of human intention. [7] proposes a formulation of
the value alignment problem assuming the robot learning
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Fig. 2: The hierarchical mind model for the collaboration task,
”making salad”, represented by an AoG. The And node represents
temporal relations between sub-tasks. The Or node represents two
possible ways for the team to finish the tasks. Each terminal node
(diamond) denotes an atomic action that would cause certain fluent
changes (triangles) for objects.

an unknown human reward function. Optimal solutions can
be achieved when the human demonstrates active teaching
behavior. To deal with sensor uncertainty and task ambiguity
in a collaborative assembly task, [8] uses an And-Or tree
structure as the task representation, which is similar to our
approach. When sub-optimal user behavior are encountered,
[9] proposes to learn the incorrect human internal dynamics
model via inverse RL and then perform an internal-to-
real dynamics transfer to assist users in shared-autonomy
tasks. Our framework differs from this line of research in
that we also aim at improving humans’ understanding of
robots’ models using communicative actions. Such two-way
understanding will further help human-robot collaborations.

Goal-driven explainable AI. In contrast to data-driven
XAI which improves understanding of ”black-box” machine
learning algorithms given input data, goal-directed XAI
typically explains the behavior of an agent or robot for a
specific task [10], [11], [12], in order to increase model
transparency [13], human’s trust [14] or task performance
[15]. Some of the works achieve this aim by enabling robots
to directly generate easy-to-understand motions [16], [17]
or task plans [18]. Other works, similar to ours, focus
on using explicit communication to change user mental
state, e.g., updating users’ incorrect reward functions [19],
correcting users’ false belief or misunderstanding about the
environment [20], [21], resolving the disagreement between
collaborators’ actions [22] or providing users with necessary
knowledge about the current situation [23]. Compared to
these work that often require offline training with humans
or theoretical assumptions on the human models, this paper
takes a direct approach to generate explanations solely based
on an online estimation of human model and knowledge of
the task structure. The experiment results show our approach
is empirically effective in an ad-hoc human-robot teaming
settings [24] where pre-coordination is not available.

III. SINGLE AGENT MIND MODEL

And-Or graphs (AoGs) have been widely used for robot
task planning [25], [26], [27] and human activity model-
ing [28], [29]. As a hierarchical representation, a spatial-
temporal-causal And-Or graph (STC-AoG) encodes a joint
task plan and corresponding spatial, temporal, and causal re-
lations an agent could have about the task [25]. In this work,
we propose to use a STC-AoG as a unified representation of
a robot’s knowledge and plan regarding the task as well as
the inferred human’s knowledge and plan. An example of a
single-agent plan for making salad is in Figure 2.

A. STC-AoG as a Hierarchical Mind Model
In general, an And-Or Graph consists of nodes and edges.

The set of nodes includes Or node, And node, and Terminal
node. Each Or node specifies the Or relation: only one of
its children nodes would be performed at a given time. An
And node represents the And relation and is composed of
several children nodes. Each Terminal node represents a
set of entities that cannot be further decomposed. The edge
represents the top-down sampling process from a parent node
to its children nodes. The root node of the And-Or tree is
always an And node connected to a set of And/Or nodes.
Each And-node represents a sub-task which can be further
decomposed into a series of sub-tasks or atomic actions.

In this paper, the graph G =< A,F, T, V,R, P > is
formally defined as the following:
• A is a set of terminal nodes. Each node corresponds to an

atomic action a ∈ A.
• F is a set of object states essential to the task, including

possible pre-conditions and post-effects of atomic actions.
• T : F × A → F is a set of transition rules that represent

state changes caused by atomic actions.
• V is a set of non-terminal nodes, which can be further

decomposed into two sets: the And nodes S and the
Or nodes O. Each sub-task corresponds to an And node
s, which encodes a temporal relationship between its
children. An Or node o forms a production rule with
an associated probability, i.e. you may choose one of its
children each weighted with a certain probability.

• R is the set of production rules.
• P is the set of probabilities on production rules.
Causal relation. Causal knowledge represents the pre-
conditions and the post-effects of atomic actions. We define
it as a fluent change caused by an action. Fluent f ∈ F
can be viewed as some essential properties in a state x that
can change over time, e.g., the temperature in a room and
the status of a heater. For each atomic action, there are pre-
conditions characterized by certain fluents of the states. E.g.,
an agent cannot successfully turn on the heater unless it is
plugged in. As the effect of an action, certain fluents would
be changed, and the state x would evolve to x′. For example,
if someone turns on a heater, the temperature of the room
will be higher (and the heater would be on). It is formulated
as one of the transition rules T .
Temporal relation. Temporal knowledge encodes the sched-
ule for an agent to finish each sub-task. It also contains the
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Fig. 3: Robot mental state pgr and inferred human mental state p̂gh represented as parse graphs.

temporal relations between atomic actions in a low level sub-
task. The sub-task preparing salad, for example, consists of
taking salad, placing it onto the cutting board, and using the
knife.
Spatial relation. Spatial knowledge represents the physical
configuration of the environment that is necessary to finish
the task. In our case, to make the salad, an agent needs to
know the locations of ingredients (e.g., lettuce), tool benches
(e.g., basket, cutting board), delivery benches, etc.

B. Parse Graphs as Mental State Representations

During the collaboration, an agent can use parse graphs
to represent the mental states of itself or the other agent.
A parse graph is an instance of an And-Or Graph, each
of its Or nodes selects one child node. Figure 3 shows
two parse graphs represent the robot and human’s plan
for the situation shown in 1. In our case, the parse graph
pgt =< sht , s

r
t , a

h
t , a

r
t , f

h
t , f

r
t > is one possible plan for both

agents to finish the task. Particularly, the root node leads
to a selection of individual sub-tasks (sht , s

r
t ) as sub-goals

assigned to human and robot agent. To achieve these sub-
goals, agents perform atomic action (aht , a

r
t ) based on their

belief of current fluent (fht , f
r
t ).

C. Joint task planning by parsing STC-AoG

To construct the mental state representation for the robot,
we design an algorithm based on STC-AoG parsing to select
the optimal task plan for the team.

Given a set of sub-tasks S necessary to complete the joint
task, the objective is to minimize the total task completion
time by assigning a sub-task to either a robot or human agent,
without violating any latent constraint:

min
xv
s ,τs

max
v∈{r,h}

∑
s∈S

xvsδ
v
s

s.t. xvs ∈ Xfeasible, τs ∈ Γfeasible.

(1)

where xvs is a binary variable indicating whether to assign
sub-task s to agent v, and τs is a continuous variable
representing the finishing time for the sub-task s. Constant
δvs represents the amount of time for agent v to finish the
sub-task s. Xfeasible and Γfeasible represent the set of valid
assignments that satisfies latent causal constraints, e.g., an

agent cannot hold two objects at the same time; a sub-
task can be performed only if pre-conditions are met; after
all assigned sub-tasks have been completed, the final state
should satisfy the goal requirement.

We search for the optimal task plan via a dynamic
programming algorithm. Starting from the initial state fb,
we make valid sub-tasks assignments and simulate new
intermediate state fe based on the state transition function
T . By updating the current optimal consumed time and the
corresponding sub-task assignment vectors for every inter-
mediate state, our algorithm will finally reach the optimal
plan for the entire task. During the updating process, we
also record the sub-task assignment vectors for previous
states, in order to generate the whole optimal assignment
{xvs}s=1,...,|S| and completion time τ1, ..., τ|S| for each sub-
task. After the task plan is computed, the robot’s mental
model is represented by a parse graph, as shown in the left
part of 3: each sub-task in the task plan indicates a sub-goal
that an agent needs to achieve at the time being. Sub-tasks are
further connected with a sequence of corresponding atomic
actions, which have certain pre-conditions and post-effects.

IV. JOINT MIND MODELING FOR HUMAN-ROBOT
COLLABORATIONS

Our goal is to enable efficient human-aware collabora-
tion for a human-robot team. Specifically, robots need to
understand human agents based on their actions and decide
whether the team is moving in the right direction. We propose
to model the robot mental state pgr and the human mental
state pgh.

A. Mind Models for Human and Robot

We treat the robot’s mind as the oracle, i.e., it contains all
necessary spatial, temporal, and causal information the team
needs to finish the task. For example, at any given time t,
the robot has a certain expectation of (i) current low level
sub-goals (sht , s

r
t ) both agents should be pursuing; (ii) the

actions (aht , a
r
t ) agents should perform; (iii) whether current

object fluents satisfy pre-conditions of such actions, and what
would be the post-effects.

It is also necessary to model the user’s mind, which acts
as a strong inductive bias in predicting user activities. As the
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Fig. 4: Human mental model update process. We use it to infer
user mental state pgh, which is hidden to the robot. Here we
assume human actions ah

t and robot message mr
t are conditional

independent given human mental state pght at time t.

user’s mental state pght is not directly available to the robot,
we propose to infer it from user behavior and the history of
communication.

B. Human Mental State Inference

Based on the observed user behavior, we infer the most
likely human mental state p̂gh, including the belief, goal and
action plans. On a high level, this inference process uses
observed user actions and communication history to infer
human mental state. Specifically, given the And-Or graph G
and human-robot interaction data DT = {dt}t=1,...,T , we
infer the user mind p̂gh iteratively:

p̂gh = arg max
pgh

p(pgh|DT , G), (2)

p(pgh|DT , G) ∝ p(pgh|G,DT−1)p(dT |pgh, G). (3)

Here the first term models the prior on the user mind given
previous data DT−1 and AoG structure G. The second term
models the likelihood for new data dT .

To model the likelihood function p(dT |pgh, G), we take
a sampling-based approach. For each interaction data d, we
consider user atomic action ahobs and communication between
the two agents m. The idea is to model how likely the user
performs action ahobs when receiving message from the robot
mr, with current mental state pgh, as shown in Figure 4.
Assuming ahobs and mr are conditional independent given
pgh we have:

p(d|pgh, G) = p(ahobs|pgh, G)p(mr|pgh, G), (4)

p(ahobs|pgh, G) =
∑
ahsamp

p(ahsamp|pgh)p(ahobs|ahsamp), (5)

where p(ahsamp|pgh) denotes the probability of sampled
human action ahsamp given current estimation of human
mental state pgh. p(ahobs|ahsamp) measures the similarity be-
tween observed human trajectory ahobs and sampled trajectory
ahsamp.

In practice, we use rapid-exploring random tree (RRT*)
for trajectory sampling and dynamic time warping (DTW)

Algorithm 1: Planning and explanation generation

1 while Task not finished do
2 if Replan needed then
3 Collect state information from the game;
4 Collect predicted human intentions from the last

time step ;
5 Call DP planner ;
6 Obtain a new sequence of sub-tasks from

planner and re-organize AoG based on it;
7 Parse AoG through checking pre-conditions and

post-effects against the current environment
state information ;

8 Find out the next atomic action to execute
based on parsing result ;

9 Predict human intentions by equation (6) ;
10 Measure the difference between predicted intention

and expected human actions;
11 Generate an explanation if the difference > τ ;

based approach to compare trajectories. DTW outputs a dif-
ference score diff . We use it in the energy function for the
Boltzmann distribution. Then we update the human mental
state in every time-step through the following equation:

P (p̂ght+1|DT , G) =
1

Z
e−

diff
T λnP (p̂ght |DT−1, G), (6)

where T is a constant temperature term, Z is a normalization
constant, and λ (> 1) is a constant that controls the impor-
tance of an explanation. It models how much information the
user can retain for an explanation. n is the number of times
an explanation about p̂gh is generated for the user in this
task. Therefore, λn implicitly encodes the communication
history m. Right now, we only consider communications
from robot to human mr. Communication from human
to robot mh can be considered in the future by adding
corresponding energy terms. For now, some parameters (T
and λ) are set heuristically. These parameters can be learned
from annotated user data [30].

C. Robot Mental State Update

Based on the observations in the environment, the robot
can update its joint task plan. It is a two-step process. First,
the robot collects all relevant information about the task
and calls a DP planner described in Section III-C to obtain
an optimal sequence of sub-tasks. Then the robot updates
its mental state through re-organizing AoG (Delete finished
nodes. Re-order unfinished nodes. If necessary, add back
nodes deleted previously). Second, the robot uses causal
knowledge (pre-conditions and post-effects of each atomic
action) in the AoG terminal nodes to determine the next
atomic action. If pre-conditions for the next atomic action
are satisfied, the robot will execute it. Otherwise, the robot
will be idle, waiting for the user to complete the other part
of the job.
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Fig. 5: Explanation timing. At time t, sort posterior probability of pghi
t in descending order, and then compare the most possible user

mental state pgh1
t with robot mental state pgrt . Since they are the same, there is no need to explain to the user. At time t′, pgh1

t′ is not
equal to pgrt′ , therefore, the robot should provide the explanation.

V. EXPLANATION-BASED TASK COACHING

In this section, we propose a framework for explanation
generation to enable efficient human-robot collaboration.

A. Explanation framework

As shown in Algorithm 1, the framework includes an iter-
ative process of online planning and explanation generation:
1) At a given time, the robot updates its mental state to

represent the expected current goals of both agents and
corresponding atomic actions;

2) The mental state of the human agent can be inferred,
which would be further compared to the robot’s mental
state. Based on the result, the robot would decide whether
explanations are necessary;

3) On the occasions where users perform an action other
than that indicated in the explanation, the robot would
update its task plan and mental model to reflect the best
joint policy and expected mental models in the new state.
Take the task making salad for example. At the beginning
of the game, an optimal plan requires the user to first take
the plate. A sub-optimal plan could be the user first taking
the lettuce. If the user insists on taking the lettuce first
regardless of whether explanations are given, the robot
will update the task plan and expect the user to gather
the plate afterwards.

B. Explanation Timing

The explanation serves to provide users with the knowl-
edge necessary to finish the task efficiently. This is achieved
by inferring the user’s mental model during the interaction
and comparing it with the robot’s. Whenever a disparity
between these two models is detected, we can generate
explanations to encourage correction of the user’s mental
state.

During collaboration, we use temporal parsing to get robot
mental state pgrt from its And-Or graph at time t. As in
Section IV-B, user mental states p̂ght can be inferred based

on communication history and action sequences. The system
generates explanations when there is a mismatch between the
robot mental state and inferred human mental state: |pgrt −
p̂ght | > ε. In practice, we measure P (p̂ght |DT , G) for every
sub-tasks at each time step based on equation (6). If the
probability P (p̂ght = pgrt |DT , G) is lower than a threshold
τ , we generate an explanation for the user. This process is
shown in Figure 5.

C. Explanation Content

We envision the disparity occurred between the user’s
mental state and robot’s due to several reasons:

1) The user wants to achieve goals that are different from
the robot’s expectation;

2) The user performs incorrect atomic actions to achieve a
sub-goal;

3) The user is unaware of the pre-condition or effect of an
atomic action.

In this paper, we do not distinguish between the possible
causes of disparity when choosing the explanation timing,
as they are too ambiguous. Instead, we propose to generate
hierarchical explanation which consists of three components
of the robot’s mind representation:

1) The robot would explain the current expected sub-goals of
both agents (sht , s

r
t ) based on its mental state pgr, e.g.,

”My current goal is preparing the lettuce. Meanwhile,
your expected goal is getting the plate.”;

2) The robot communicates the expected atomic actions
that both agents are supposed to perform (aht , a

r
t ), e.g.,

”Currently, I’m performing the action slicing the lettuce.
You are supposed to perform the action taking the plate.”;

3) In addition, by showing images of world states before and
after an action (as shown in Figure 6b), the robot would
also demonstrate the fluent change caused by an atomic
action ft

at−→ ft+1.
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(a) (b)

Fig. 6: (a) A top-down view of our collaborative cooking game, where the user (the bottom character) collaborates with a robot (the top
character) on some cooking tasks, e.g. making apple juice. (b) The explanation interface exhibits the expected sub-tasks for both agents.
Pre-conditions and post-effects of atomic actions are displayed as well.

Fig. 7: An example task schedule for making apple juice. The robot maintains the schedule to reflect its expectation on how the team
should finish the task. Each color block represents a sub-task, performed by either robot or human. At a specific timing, we can assign
tasks to both agents based on the schedule. E.g. at 10.0s, the robot is getting apple slices 1 while the user is supposed to be preparing
apple 2. The schedule gets updated based on inferred human mental states, as shown in Algorithm 1.

VI. USER STUDY

We conducted a user study in a gaming environment to
evaluate our algorithm, where participants can collaborate
with agents on a virtual cooking task. The gaming environ-
ment and explanation interface are displayed in Figure 6.

A. Experiment Domain
Our experiment domain is inspired by the video game

Overcooked1, where multiple agents are supposed to make
use of various tools and take different roles to prepare,
cook, and serve various dishes. Particularly, we use Unreal
Engine 4 (UE4) to create a real-time cooking task, namely
making apple juice. To finish the task, teammates need to
take apples from the box and slice them with a knife near
the chopping board. Three apple slices should be put into the
juicer before producing and delivering apple juice. Figure
6a shows a top-down view of the environment. The game
interface is designed to be interactive (e.g., object appearance
will change after taking valid actions) so that people can
easily play through.

To finish the task, each user needs to complete a sequence
of 62 atomic actions, if acting optimally, and observe 5
different object fluent changes with a total state space around
109. An example task schedule is shown in Figure 7.

1http://www.ghosttowngames.com/overcooked/

B. Experiment Design
Hypotheses. The user study tests the following hypotheses

with respect to our algorithm in the collaboration:
• H1: Task completion time. Participants would collaborate

with the robot more efficiently if the robot generates
explanations based on the human mental state modeling,
compared to the other conditions.

• H2: Perception of the robot. Participants would have
higher perceived helpfulness and efficiency of the robot,
as a result of receiving explanations based on the human
mental state modeling, compared to the other conditions.

Manipulated Variables. We use a between-subject design
for our experiment. In particular, users are randomly assigned
to one of three groups and receive different explanations from
the robot:
• Control: Users would not get any explanations from the

robot. As a result, they can learn to finish the task by
interacting with the environment.

• Heuristics: The robot gives explanations when there is
no detected user action for a period of time. This serves
as a simple heuristic for the robot to infer whether the
user is having difficulties in finishing the task. The timing
threshold is set to 9.3 seconds, based on the result of a
pre-study in which users can actively ask for explanations
when they get stuck.
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Fig. 8: Time taken for the team to complete two orders under
different testing conditions.

• Mind modeling: The robot gives explanations when there
is a disparity between robot and human mental states.

Study Protocol. Before starting the experiment, each par-
ticipant signs an informed consent form. An introduction is
given afterward, including rules and basic controls of the
game. As a part of the introduction, participants are given
three chances to work on a simple single-agent training task,
to verify their understanding. Those who fail to complete the
training task in one minute would not continue the study.
This is a comprehension test to exclude people who do not
understand game control.

Participants who finish training get to see further instruc-
tions before starting to collaborate with the robot. They
are first educated about the goal of a collaboration task
(i.e., making apple juice) and what actions the team should
perform to finish it. This is done to make sure every partic-
ipant has sufficient knowledge to finish the task, so that the
impact of user-specific prior knowledge can be minimized.
To prepare users to interact and communicate with the robot
agent, we would also show them a top-down view of the
level map (as shown in Figure 6a), the appearance of the
robot agent as well as an example of an explanation. During
the task, the team is required to make and serve two orders
of dishes in the virtual kitchen. At the end of the study, each
participant is asked to complete a post-experiment survey
to provide background information and evaluate the robot
teammate.
Measurement. In the background study, we have collected
from users their basic demographic information, education,
as well as experience with video games.

Our objective measure is intended to evaluate the human-
robot teaming performance and subjective measure is de-
signed for evaluating users’ perception of the robot. Our
dependent measures are listed below:
• Teaming performance. We evaluate teaming performance

by recording the time for the team to complete each order.
• Perception of the robot. We measure user’s perception

about the robot, in terms of its helpfulness and efficiency.
Helpfulness is comprised of questions that measure users’

Fig. 9: User’s self-reported perception of the robot in terms of its
efficiency and helpfulness.

opinion on the robot’s ability to provide necessary help.
Efficiency is comprised of questions that measure users’
opinion on how efficiently and fluently the team is able to
finish the task.

C. Results and Analysis

We recruited 29 subjects for our IRB-approved study
from the university’s subject pool. Most of the participants
(69.3%) came from a non-STEM background. Their reported
ages ranged from 17 to 36 (M=19.52, SD=2.89). All the
participants have moderate experience with video games and
have not played the video game Overcooked, which inspired
our study design. Each participant got 1 course credit after
completing the study. In addition, for ease of conducting the
study, we discarded the data of 2 participants from the control
group, as they got completely lost and failed to finish the
designated task. As a result, there are 10 valid participants
in the ”mind modeling” and ”heuristics” group, and 7 in the
”control” group.

Generally, we use ANOVA to test the effects of different
experimental conditions on teaming performance and subjec-
tive perception of the robot. Tukey HSD tests are conducted
on all possible pairs of experimental conditions.

As shown in Figure 8, we found marginally significant
effects from ”mind modeling” conditions on completion time
of the first order (F (2, 24) = 2.038, p = .152). Post-hoc
comparisons using the Tukey HSD tests revealed that teams
could finish the first order significantly faster if users were
under the ”mind modeling” condition, compared to those un-
der ”control” (p = .044). The result is marginally significant
compared to those in ”heuristics” (p = .120), confirming
H1. However, for the completion time of the second order,
we did not find any significant effect (F (2, 24) = 0.425, p =
.658). This is not surprising since users were asked to finish
the same task twice. They could take advantage of their
previous experience working with the robot for the second
order. Intuitively, the quantitative result showed that our
explanation generation algorithm helped non-expert users to
finish the task efficiently on their first run, while those in the
control group needed to complete the task once to be able
to finish it with the same efficiency.

The factorial ANOVA also revealed a significant effect
of the explanation system on the perceived helpfulness
(F (2, 24) = 4.663, p = .019) and efficiency (F (2, 24) =
4.136, p = .029) of the robot (Figure 9). In support of
H2, post-hoc analysis with the Tukey HSD tests showed
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that the robot’s perceived helpfulness was significantly higher
under the ”mind modeling” condition, compared to ”control”
(p = .023) and ”heuristics” (p < .01). Users under the ”mind
modeling” were also more likely to believe the explanation
system resulted in improved collaboration efficiency, com-
pared to ”heuristics” (p = .026) and ”control” (p < .01).

VII. CONCLUSION

In this paper, we propose a framework that allows a robot
agent to improve teaming performance by communicating
compelling explanations to its non-expert human teammate.
By maintaining the mental state of both agents, the robot
agent successfully generates explanations when the human
behavior deviates from the optimal plan. By conducting a
user study on a virtual collaborative cooking task, we demon-
strate that the proposed algorithm can improve efficiency and
quality of the interaction.

For simplicity of implementation, the current environment
configuration prevents human and robot from having a shared
workspace. For future work, we plan to study more cooking
tasks in a diverse set of environments where multiple collab-
oration strategies can evolve. In addition, to make the robot’s
model more transparent, we consider to generate contrastive
explanations with respect to identified incorrect user beliefs
from the user’s mental model in the future. Meanwhile, we
plan to focus on a more balanced settings where both the
human and robot agent have some information (e.g. ability,
preference) to share with the teammates before a valid and
efficient joint task plan can be formed.
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