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Abstract— Task-free attention has gained intensive interest in
the computer vision community while relatively few works focus
on task-driven attention (TDAttention). Thus this paper handles
the problem of TDAttention prediction in daily scenarios where
a human is doing a task. Motivated by the cognition mechanism
that human attention allocation is jointly controlled by the
top-down guidance and bottom-up stimulus, this paper proposes
a cognitively-explanatory deep neural network model to predict
TDAttention. Given an image sequence, bottom-up features, such
as human pose and motion, are firstly extracted. At the same
time, the coarse-grained task information and fine-grained task
information are embedded as a top-down feature. The bottom-up
features are then fused with the top-down feature to guide
the model to predict TDAttention. Two public datasets are
re-annotated to make them qualified for TDAttention prediction,
and our model is widely compared with other models on the
two datasets. In addition, some ablation studies are conducted to
evaluate the individual modules in our model. Experiment results
demonstrate the effectiveness of our model.

Index Terms— Human attention, task-driven.

I. INTRODUCTION

NEARLY 108-109 bits data arrive human retina [1], [2]
per second, conveying an overwhelming amount of

information that is impossible for the human visual system
to process all data equally. The attention mechanism filters
relevant data from irrelevant noises, which essentially reduces
the amount of data processing and enables the visual system
to allocate limited neural computing resources to the most
important parts, making it effortless to perceive and under-
stand the visual world [3]. As the importance of attention,
visual attention has been intensively studied in the computer
vision community since the 1980s. However, the study mainly
focuses on the task-free attention that is attracted by the salient
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stimuli in a bottom-up manner. Motivated by this situation, this
paper handles the problem of predicting task-driven attention
that additionally involves the top-down guidance.

The task is at the core of AI. Artificial General Intelli-
gence (AGI) system factually targets to tackle a wide range of
tasks in the human-like manner [4]. Some researchers argue
that objects in the world are designed for humans to finish
various tasks and satisfy various requirements. Actually, many
studies [5]–[7] have demonstrated that a human’s behavior and
attention are, to a large extent, guided by the task. For example,
under the guidance of the task ‘taking the water’, a human pays
attention to the cup and water dispenser; under the guidance
of the task ‘sweep the floor’, a human pays attention to the
broom and dustpan. Therefore, it is significant to study task-
driven attention.

One potential application is that a robot infers a human’s
attention so that to assist the human. For patients suffering
from the spinal cord injury, it is difficult for them to perform
some extremely-easy tasks in daily living. In this kind of
case, if a robot could infer human attention using the camera
configured on it, the robot is able to assist the patient to
grasp, release, and move the attention objects. As shown
in Fig. 1, in a human-robot coexistence scenario, the images
captured from the robot’s view are taken as the input of
the model to predict human attention, based on which the
robot could take action to assist the human. Targeting for this
kind of application, this paper studies the task-driven attention
prediction in daily living scenarios from the third perspective
(i.e., robot’s perspective). We believe this study will benefit
various intelligent applications.

In the past decades, eye fixation and saliency are two syn-
onyms of human attention, which mainly refers to the regions
or objects that ‘pop out’ from the surrounding environments
due to their salient features of color, size, motion, texture,
edge, etc. Since this kind of attention is purely driven by the
data in a bottom-up manner, it is called task-free attention (i.e.,
free viewing attention). Realizing the importance of tasks in
guiding human attention, some researches have started to study
Task-Driven Attention (TDAttention) in recent years [5], [8],
[9], and the tasks are defined as searching for two specific
object categories [8], multiple target objects [9] or playing
the game [5]. Compared with current studies on TDAttention,
our work presents two-fold differences. On the one hand,
current studies focus on inferring TDAttention from the first
perspective (i.e., the human’s perspective) where the attention
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Fig. 1. The problem handled in this paper is predicting human attention
from a robot’s view, in a human robot-coexistence scenario where the human
is doing a task. The potential application is that the robot predicts human
attention and then takes action to assist the human.

is defined as the inside-image locations or objects that attract
human attention, while our work infers TDAttention from
the third perspective (i.e., the robot’s perspective) as shown
in Fig. 1. On the other hand, current studies mainly focus on
a single task (e.g., visual searching), while our work predicts
human attention in various tasks in daily life (e.g., make
coffee, mop floor, take medicine, etc.).

From the perspective of methodology, though it is a com-
mon view that attention is simultaneously controlled by both
bottom-up and top-down components [5], [10], [11], methods
for both task-free attention and task-driven attention prediction
usually ignore modeling top-down guidance. The main idea of
task-free attention prediction methods is firstly constructing a
neural network to predict a saliency map, and the network
is then optimized to predict attention by minimizing the
‘distance’ of the predicted saliency map with the provided
ground truth [12]–[14]. Methods for TDAttention predic-
tion have not converged to a unified framework. For exam-
ple, Zelinsky et al. [8] discretized the image into 160 grids
and formulated attention prediction as a 160-class classifica-
tion problem; Yang et al. [9] predicted attention by selecting
maximally-rewarding eye fixation location via inverse rein-
forcement learning. In current studies, though some so-called
top-down cues like object context and object semantic rela-
tionship have been considered, few works directly model the
task to facilitate attention inference.

Based on the above observations, this paper proposes a
deep task-driven attention prediction model that integrates
the bottom-up stimulus with top-down guidance. Human pose
and motion cues, which are tightly linked with attention, are
fused with the raw RGB image cue to serve as the bottom-
up stimulus. For the top-down task guidance, the coarse-
grained and fine-grained task information are embedded as
the top-down feature. Our proposed neural network model is
composed of four modules, bottom-up feature fusion module
(BU), top-down task guidance module (TD), spatial-temporal
inference module (ST), and decoder module (DC). Given an
image sequence as the input, the images are processed by the
BU module to extract the bottom-up feature maps. In the TD
module, the top-down feature is integrated with the bottom-up

feature, and the task constraint is imposed to guide the network
to update the integration feature under the guidance of the task.
The TD module outputs a sequence of strengthened feature
maps, which are further processed by the ST module to explore
the relation of features in the temporal dimension. Finally,
in the DC module, the feature maps are decoded as attention
probability maps.

To test our model, two public datasets collected in real daily
activities, including the CAD120 [15] and TIA [16] datasets,
are selected for testing. In the experiments, six classic and
state-of-the-art methods are compared with our method on the
two datasets, and the experiment results show that our method
outperforms other methods. Several ablation experiments are
also conducted to test the individual modules of our model,
and the experiment results validate the effectiveness of the
individual modules.

The contributions of this paper are as follows: 1) This paper
predicts human attention from the third perspective, while
most current studies predict human attention from the first
perspective. 2) This study infers human attention in various
tasks in daily activities, while most current studies focus on a
single task. 3) This paper constructs a top-down and bottom-
up collaborative mechanism to predict human attention. 4) We
manually annotated the attention objects in two public datasets
to make them qualified for TDAttention prediction. The anno-
tations of attention objects, the information of datasets and the
code are available at https://github.com/xjtu-nzx/Predicting-
Task-Drivern-Attention.

II. RELATED WORK

A. A Brief History of Human Attention Study

Human attention study has a long history in diverse domains
such as philosophy, psychology, cognitive science, and com-
puter science. Dating back to the fourth century, attention is
originally studied by philosophers, and they held the idea that
attention is linked with awareness and consciousness [11].
Coming to the nineteenth century, attention begins to be
studied in the psychology domain. James, known as the father
of psychology, linked attention to the data compression and
noted that attention should answer the question of ‘what are the
objects of interest’ [17]. In the middle of the twentieth century,
Broadbent, a well-known cognitive scientist, described atten-
tion as a ‘early selection’ mechanism that acts likes a filter
to select the relevant information and discard the irrelevant
information [18]. In contrast to the ‘early selection’ theory,
Deutsch et al. proposed the ‘late selection’ model [19], with
the idea that all information is acquired at the early stage and
the relevant information is selected at the late stage. In the
1980s, the famous ‘feature integration’ theory was proposed
by Treisman and Gelade [20], arguing that an object attracts
human attention by the integration of features like color, size,
and orientation.

Different from the above-mentioned domains, researchers
in the computer science domain started to study attention
at the end of twentieth century, and the studies focus on
computational models rather than theory analysis. After widely
reviewing the literature regarding attention in the computer
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science domain, we summarize the related works from three
different perspectives: 1) bottom-up and top-down, 2) pixel-
level and object-level, and 3) first perspective and third per-
spective. The related works are detailed as follows.

B. Bottom-Up Attention and Top-Down Attention

Overall speaking, a considerable amount of works study
bottom-up attention, while few works attempt to predict
top-down attention. Bottom-up attention is based on the
assumption that conspicuous visual features ‘pop-out’ from
the background and involuntarily capture human attention.
Top-down attention emphasizes the effect of high-level infor-
mation (e.g., tasks and goals) on attention allocation.

For bottom-up attention, many excellent models have been
proposed. In the early time, inspired by the ‘feature integra-
tion’ theory [20], many methods predict attention by inte-
grating low-level features like color, edge, texture, intensity,
orientation, and size. For example, in 1998, Itti et al. proposed
a model that firstly extracts three low-level features (color,
intensity, and orientation) from an image to generate three
saliency feature maps, which are then fused to predict atten-
tion [21]. Before the deep learning era, these kind of methods
are dominant in the computer vision community. Since 2012,
with the rapid development of Deep Neural Network (DNN),
DNN based methods [12], [13], [22]–[24] have replaced the
traditional methods. The pipeline of DNN based methods is
firstly predicting a saliency map using a DNN model, and
then minimizing the loss functions that measure the ‘distance’
of the predicted saliency map with the provided ground
truth map. Currently, the focus of research is exploring more
effective network architectures and feature fusion mechanisms.
For example, Liu et al. [23] adopted the multi-branch network
architecture, and Wang and Shen [24] fused the feature maps
in different layers to learn robust features. Recent approaches
begin to take advantage of other modalities, such as auditory
information [25]–[27], to model human attention.

For top-down attention, an early work [28] predicted the
eye fixation locations of observers who performs the task of
searching for people in images, and the attention map was
estimated by integrating the output of three models, including
saliency model, target appearance model, and scene context
model. In 2012, Borji et al. [5] predicted human attention
in the scenario that the human is engaged in video games.
A Bayesian model fusing multi-modal information, including
global context, previous saccades, and previous motor actions,
was proposed to handle the problem. In recent years, studies
concerning top-down attention mainly focus on the visual
search task. For example, the task defined in [8] is searching
images for two kinds of target objects, including microwave
and clock; The task defined in [9] is searching for 18 categories
of target objects. One common point of these works is that
the top-down attention is defined as the inside-image objects
or locations that are predicted from a human’s view (i.e., first
perspective) in the situation that a human is observing images.
In this paper, top-down attention is defined as the objects
that are predicted from a robot’s view (i.e., third perspective)
in human-robot coexistence scenarios. In addition, this paper

considers diverse tasks involving in daily life, rather than a
single task.

C. Pixel-Level Attention and Object-Level Attention

Eye fixation or saliency is the synonym of pixel-level
attention, which is modeled as a heat map, and each pixel of
the heat map has a probability of representing human attention.
Saliency object is the synonym of object-level attention, which
is modeled as a binary map, where pixels belonging to the
attention object are assigned with the value of ‘1’ while
background pixels are assigned with the value of ‘0’.

Because the related works concerning pixel-level atten-
tion have been included in the above ‘bottom-up attention’
part, here we mainly review the works regarding object-level
attention. One of the earliest works studying saliency objects
was introduced by Liu et al. [29] in 2007, and the authors
proposed a CRF model that integrates three kinds of features,
including multi-scale contrast feature, center-surround his-
togram feature, and color spatial distribution feature. Inspired
by the success of DNN models, many DNN based meth-
ods [30]–[32] are proposed for saliency object detection. The
core idea is similar to that of pixel-level attention estimation,
and the research point lies in exploring the effective network
architecture to learn the informative feature representations.
The disadvantage of these methods is that the network weakens
the detailed information in the deep layers of the network.
After 2016, the majority of saliency object detection methods
are based on the Fully Convolutional Networks (FCN) [33].
Compared with DNN, the advantage of FCN is that it enables
the network to recover spatial details of images, allowing the
model to make use of both high-level semantic features and
low-level fine details to detect saliency objects. Therefore,
existing studies intensively explore the FCN based network
architectures, such as the single-stream architecture [34], [35],
and the multi-stream architecture [36]. In addition, the ‘skip-
connection’ architecture is also widely used to fuse multi-scale
feature maps to strengthen the feature representation [14],
[37]–[39]. The recent approach proposed by [40] learns the
residual of each side-output so that to refine the side-output
for a fine-grained prediction. Some other efforts are also made
in recent works. For example, the work [41] attempts to detect
saliency objects while reducing the size of the training dataset;
The work [42] targets to increase the speed of saliency object
detection by modeling spatial-temporal interactions.

D. First Perspective Attention and Third Perspective
Attention

When a human observer is observing an image, the locations
or objects that attract the attention of the observer are defined
as the first perspective attention. Comparatively, the third
perspective attention is predicted using the images/videos
captured from a robot’s perspective (as illustrated in Fig. 1)
or a fixed monitoring perspective.

Related works concerning the first perspective attention have
been involved in the above parts, thus here we mainly review
the studies of the third perspective attention. In the early time,
the third perspective attention is studied in the relatively simple
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Fig. 2. The overview of our proposed model. The model takes an image sequence as the input, and outputs the attention probability maps of the input image
sequence. Our model mainly consists of four modules. The BU module extracts the bottom-up features such as human pose and motion. The TD module
integrates the task feature with bottom-up features, and imposes the task constraint on the integration feature to update the bottom-up feature map fbu in the
back-propagation manner. The ST module updates fbu using the Convolution Long Short Term Memory network. The DE module up-samples fbu to the
attention probability maps.

scenarios where humans are restricted with limited head and
body movements, and the detailed facial information (e.g.,
pupil, eye, and face) of a human is fully observed [43], [44].
The idea of mainstream methods is using the appearance fea-
tures from the human pupil, eye, and/or face to regress a gaze
direction [45], or using the appearance features to fit a known
model to estimate human gaze [46]. To make the model to be
applicable to complex scenes where humans are moving freely
and the detailed facial information is not always available,
Recasens et al. [47] proposed a more complex benchmark
dataset named GazeFollow in 2015. In the following years,
a series of excellent models are proposed [48]–[50]. For these
studies, attention is mainly predicted in a bottom-up manner,
and the top-down task is not directly involved. In recent years,
another active research direction in third perspective attention
is joint attention (i.e., shared attention) [51], [52], which
is defined as the attention that multiple humans are paying
to. The joint attention usually happens in social interaction
scenarios involving more than one human subject.

III. METHOD

In this section, we introduce our method by starting with
the overview of our proposed deep neural network model,
followed by detailing the individual modules in the model.

A. Overview

As shown in Fig. 2, given an image sequence I = {it |t =
1, 2, . . . , T } as input, the output is the human attention
A = {at |t = 1, 2, . . . , T }, where at represents the human
attention that corresponds to the image it . Our proposed model

is composed of four modules, including bottom-up stimu-
lus (BU) module, top-down guidance (TD) module, spatial-
temporal inference (ST) module, and Decoder (DE) module.
In the BU module, human pose and motion features are
fused with the image feature to provide bottom-up cues for
attention prediction. In the TD module, the task information
is embedded as a feature to integrate with the bottom-up cues,
and the task is also formulated as a constraint to guide the
model to predict the task-driven attention. In the ST mod-
ule, the bottom-up feature maps are inputted to ConvLSTM
networks to learn the more robust feature representation by
exploring the spatial-temporal relation. In the DE module,
the feature maps are upsampled to probability maps that signal
the possible locations of human attention.

B. Bottom-Up Stimulus

Previous studies have demonstrated that human attention is,
to a large extent, stimulated by salient features in a bottom-
up manner. Therefore, the skeleton and optical-flow features
that signal human pose and motion are extracted from given
images to serve as the bottom-up features. The motivation
is that human pose and motion significantly indicate human
attention. In general, when a human’s hand is reaching to,
or a human’s body is approaching an object, the object is
most likely to be the attention object. For example, a human
intending to microwave food needs to walk (motion) to the
microwave and open (pose) it, where the microwave is the
attention object.

Let it be an input image at time t with the size of
3 × H × W (3 channels, H pixels in height, and W pixels in
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width). To extract human pose feature, the human skeleton
detector introduced in [53] is first used to detect human
skeleton, which is then encoded as a H × W binary skeleton
mask where human skeleton pixels are set as “1” and other
pixels are set as “0”. The human skeleton mask in it is denoted
as st . To extract human motion feature, two consecutive images
at time t and t − 1 are used to compute optical flow feature
map, which is with the size of 2 × H ×W and denoted as
mt . By separately applying the resnet [54] on it , st and mt ,
we obtain the image feature ( fi ), human pose feature ( f p) and
human motion feature ( fm ) to represent the bottom-up cues.
fi , f p , and fm are with the same size of 512 × H

32 × W
32 .

Since fi , f p , and fm represent multi-modal features, to bet-
ter utilize and fuse these features, we refer to the self-attention
mechanism introduced in [55] to align the three features. The
aligned features are fused by adding them up. The fusion
feature serves as the bottom-up feature fbu :

fbu = fv + fs + fm (1)

C. Top-Down Guidance

The importance of high-level task information for guiding
human attention and behavior in a top-down manner has been
intensively emphasized in previous literature [4], [6], [10],
[28]. Therefore, in our work, the task information is encoded to
integrate with the bottom-up cues. A task is usually composed
of several sub-tasks. As a result, all frames in a video has the
same task label, but they may have different sub-task label.
The task label is a coarse-grained cue, while the sub-task label
is a fine-grained cue.

Given the task label and sub-task label of an image, the
BERT model [56] is used to encode the two labels as two
features, which are then fused as the top-down task feature ftd

with the size of 512 × 1 × 1. The BERT allows to explore the
semantic relation of different words, contributing to construct a
powerful feature representation to encode the task information.
To fuse ftd with the bottom-up feature fbu defined in Eq.1,
an average pooling operator is firstly applied on fbu to obtain
a new bottom-up feature fb̂u with the size of 512 × 1 × 1.
Then, the fusion feature fx is computed as follows.

fx = Fc( ftd , fb̂u) (2)

where Fc represents the concatenation operator.
To obtain a better representation of fusion feature, the VAE

(Variational Autoencoder) model is adopted to firstly learn a
latent feature fz based on fx . Then, the reconstruction feature
fx |z is computed based on fz :

fx |z, μ, σ = Nvae( fx ) (3)

where Nvae represents the VAE network, and μ and σ are the
parameters to represent the Gaussian distribution of the latent
feature fz .

Two constraints are involved in our model to strengthen
the feature representation and task guidance. The first is the
reconstruction constraint that encourages the network to min-
imize the difference between fx and fx |z . The reconstruction
constraint assists in learning a robust representation for the
fusion feature to weaken the gap between top-down feature

ftd (linguistic modality) and bottom-up feature fb̂u (visual
modality).

The second is the task constraint, which is based on the
reconstruction feature fx |z . By applying a classification net-
work on fx |z , a task is predicted:

y = Np( fx |z) (4)

where Np represents the task prediction network, and y
represents the predicted task. The task constraint encourages
y to be identical with the ground truth, guiding the network
to predict the task-driven attention.

We note that the above two constraints are not directly
imposed on fbu that is actually used for attention prediction.
However, the backward propagation of the two constraints can
update the parameters of the whole network so that fbu is
updated to convey both top-down and bottom-up information.

D. Spatial-Temporal Inference

Both spatial and temporal cues are essential for inferring
human attention. Actually, human pose and motion in the
temporal axis convey richer information than that in a single
image. Therefore, a spatial-temporal inference module is used
in our model, aiming at exploring the semantic context in both
spatial and temporal dimensions.

Given the input image sequence I = {it |t = 1, 2, . . . , T },
the bottom-up features for individual images are firstly com-
puted by Eq. 1, obtaining the bottom-up feature sequence
S = { f t

bu |t = 1, 2, . . . , T }. S is then taken as the input of
the ConvLSTM (Convolution Long Short Term Memory) [57]
network, which outputs a new feature sequence S �:

S � = Nst(S) (5)

where Nst represents the spatial-temporal inference network.

E. Decoder

The decoder module takes S � defined in Eq. 5 as the
input, outputting a sequence of pixel-level human attention
probability map A = {at |t = 1, 2, . . . , T }:

A = Nde(S �) (6)

Nde is a deconvolution network. The size of feature map in
S � is 512 × H

32 × W
32 , and the size of probability map in A is

1 × H × W .
Compared with the pixel-level attention, object-level atten-

tion presents many advantages in human-robot interaction
scenarios. Therefore, an object detector is applied on the
input image sequence I, obtaining the object detection result
O = {ot |t = 1, 2, . . . , T }, which is then integrated with A
defined in the Eq. 6 to infer object-level human attention Ao:

Ao = Fi (A,O) (7)

where Fi represents inference function, which will be detailed
in the following section. We note that our model outputs the
human attention probability map A defined in Eq. 6 if the
object detection is not applied.
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IV. LEARNING AND INFERENCE

The process of learning is actually optimizing the loss
function, which is defined as:

L = λ1Loverlap + λ2Lpixel + λ3Lvae + λ4Ltask (8)

where λ1, λ2, λ3 and λ4 are weights for the individual loss.
For simplicity, the losses here are defined for a single image,
and are detailed as follows.

Let a ∈ [0, 1]1×H×W be pixel-wise human attention prob-
ability map that is predicted by the model, ã ∈ {0, 1}1×H×W

be the ground truth of pixel-wise human attention map. ã
is a binary map with attention region assigned with ‘1’ and
non-attention region assigned with ‘0’.
Loverlap is defined as:

Loverlap = 1 − 2||a � ã||1
||a||1 + ||ã||1 (9)

Loverlap represents the overlap of a and ã, measuring the
difference between a and ã from an overall perspective.
Lpixel is defined as:

Lpixel = −

∑
i, j

((1 − ω)ãi j log ai j + ω(1 − ai j ) log(1 − ai j ))

W × H
(10)

where ω represents the area ratio of attention region in ã, ai j

is the (i, j)th element of a, and ãi j is the (i, j)th element of ã.
Lpixel is a weighted cross entropy that measures the difference
between a and ã from the pixel-wise perspective. Compared
with the standard cross entropy, the weighted cross entropy
presents the advantage in weakening the imbalance effect of
attention region and non-attention region.
Lvae is defined as:

Lvae = −f (x |z) · log f (x) − (1 − f (x |z)) · log (1 − f (x))

− 1

2

(
1 + log σ 2 − μ2 − eσ

)
(11)

where fx is the fusion feature defined in Eq. 2, and f (x |z),
μ and σ are defined in Eq. 3.
Ltask is defined as:

Ltask = Fce(y, ỹ) (12)

where y is the predicted task defined in Eq. 4, ỹ is the ground
truth of task, and Fce is the standard function to compute
cross-entropy loss. The purpose of Ltask is to encourage
the model to predict task-driven attention by involving the
top-down task guidance into the back propagation of the
network.

During the inference, a new image sequence is processed
by the four modules in our model, outputting a sequence
of pixel-wise human attention probability maps as defined in
Eq. 6. For simplicity, we take a single image it at time t in
the sequence as the example, and the corresponding pixel-wise
human attention probability map is denoted as at . To explain
the inference function defined in Eq. 7, let ot = {on

t |n =
1, 2, . . . , N} be N objects detected in it . The goal of the
inference function is estimating an object that is most likely
to be the attention object. The idea is computing the scores

of objects in ot and choose the object with the highest score.
The score of an object on

t is computed by:

S(on
t ) =

∑
(i, j )∈on

t

ai j
t

Fa(on
t )

(13)

where ai j
t is the (i, j)th element of at , Fa is the function to

compute the area of on
t . Actually, S(on

t ) reflects the quantitative
overlapping proportion of on

t and at .
We know that an object detector outputs the objects and

their probabilities. Let To be the threshold of object detection.
We set To = 0.6, which means that the objects whose prob-
abilities exceed 0.6 will be taken ot = {on

t |n = 1, 2, . . . , N}.
If To is set as a small value, then a large number of objects are
detected, which increases the difficulty for our model to select
the correct one as the attention object. In contrast, if To is set as
a large value, a small number of objects are detected, leading
to that the detected objects might not contain the attention
object. Therefore, To = 0.6 is a tradeoff.

V. EXPERIMENTS

A. Dataset

CAD-120 [15] and TIA [16] datasets are used for evaluating
our model. For both datasets, third-person-view videos are
collected from various daily-life scenes, including kitchen,
office, corridor, classroom, lobby, elevator entrance, etc. The
scenes are diverse in the illumination, furniture configuration,
and object placement. The human subjects perform tasks
freely, without motion or pose constraint. Therefore, the pose
and motion present the diversity. In the CAD-120 [15] dataset,
the same task share the same background while human sub-
jects are different. In the TIA [16] dataset, some tasks have
more than one background, and human subjects are different.
The main challenge is that scenes are complex and open, mak-
ing it difficult to locate attention objects from various objects
in scenes. In addition, attention objects might be far from the
human subject, or be partially overlapped with other objects,
which further increases the challenge. The CAD-120 [15]
dataset and the TIA [16] dataset present the differences in
video numbers, tasks, and human subjects. Another difference
is that the videos in the CAD-120 [15] dataset are captured by
the cameras that are relatively near to human subjects, while
the videos in the TIA [16] dataset are captured by the cameras
with diverse distances to human subjects. In addition, the video
resolution in the CAD-120 [15] dataset is 640 × 480, while it
is 1920 × 1280 in the TIA [16] dataset.

The CAD-120 dataset [15] contains 124 videos of 4 human
subjects performing 10 tasks, including making cereal, taking
medicine, stacking objects, unstacking objects, microwaving
food, picking objects, cleaning objects, taking food, arranging
objects, having a meal. In each video, a human is performing
a task that can be further decomposed into several sub-
tasks. In each video frame, task-related objects, task label and
sub-task labels are annotated. To make the dataset available
for task-driven attention prediction, we additionally annotated
attention objects in all video frames. After filtering some
unqualified data and annotations, 116 videos covering 9 tasks
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TABLE I

INFORMATION OF BASELINES

are used in the experiments. To separate the human subjects
in training set and testing set, the videos of 3 human subjects
are used for training, and the videos of 1 human subject are
used for testing.

The TIA dataset [16] contains 809 videos of 14 human
subjects performing 14 tasks, including sweep floor, mop
floor, write on blackboard, clean blackboard, use elevator,
pour liquid from jug, make coffee, read book, throw trash,
microwave food, use computer, search drawer, move bottle to
dispenser, and open door. In each video frame, task-related
objects and task label are annotated. We additionally annotated
attention objects and sub-task labels in all video frames. After
filtering some unqualified data and annotations, 780 videos
are used in our experiments. We guarantee that the human
subjects in the training set and testing set are not overlapping
in all tasks, and the ratio of the training set and the testing set
is 2.9:1.

B. Implementation Details

H and W involved in the model are set as 224. Therefore,
the size of input image is 3 × 224 × 224. If the size of
an original image was not 3 × 224 × 224, the image will
be resized to 3 × 224 × 224 at first. The cues of human
skeleton st and optical flow mt are extracted in the off-line
manner. Image feature fi , human pose feature f p and human
motion feature fm are extracted using ResNet18 [54] in the
on-line manner. The “BatchNorm2d” and “ReLU” operators
are applied on fi , f p and fm , guaranteeing that the minimum
value of feature maps is 0. These features are with the same
size of 512 × 7 × 7. In the top-down guidance module,
the dimension of the original task feature ftd from BERT
model is 768. To fuse with the 512-dimension bottom-up
feature fb̂u , ftd is converted to 512-dimension using fully
connection layers. In the spatial-temporal inference module,
we set T = 8. In the decoder module, five deconvolution
layers are used to upsample the feature maps. The model is
implemented with PyTorch. During the learning, λ1 = λ2 = 1.
Because the magnitude of Lvae and Ltask is larger than other
losses, we set λ3 = λ4 = 0.1 to balance the effect of different
losses. The total loss is used to train the network in the end-to-
end manner. The videos in the datasets are preprocessed by a
sliding window mechanism to trim each video into sequences,
and each sequence contains T images.

C. Baselines

Six baselines from related fields are selected. We classify
the six baselines into three categories, including task-driven

attention /object detection baseline, third perspective attention
estimation baseline, and saliency estimation baseline. Some
information of six baselines are summarized in Tab. I.

1) Task-Driven Attention/Object Detection Baselines: The
following two baselines are mostly similar to our work.

a) Task-driven object detection (TDOD) [58]: In this
work, a set of objects in the image are firstly detected using
a standard object detector. Then, a Gated Graph Neural Net-
work (GGNN) model is proposed to estimate the probability
of each object being preferred for each task. We note that the
object ground truth is used to substitute the object detection.
Thus the performance is supposed to be higher than that of
the original method.

b) Human attention inference (HAI) [59]: In this work,
the input is the image sequence and human skeleton cue.
By involving the one-hot task encoding information in the
model, attention objects are predicted.

2) Third Perspective Attention Estimation Baselines: Our
model predicts human attention from the third perspective.
The following three baselines reveal the third perspective of
human attention by human gaze direction. Thus we select these
models as the baselines.

a) Where are they looking (WATL) [47]: In this work,
the authors propose a model that utilizes the input image
and human head location in the image to predict human gaze
direction.

b) Fine-grained head pose estimation (FHPE) [60]: In
this work, the model takes the image as input, outputting the
Euler angles (yaw, pitch, and roll) of the head to indicate
human gaze direction.

c) Joint 3d face reconstruction (JFR) [61]: In this work,
the model takes the raw image and human face bounding
box as input, and the output is the dense (more than 40K)
aligned face key points. These dense points are compared with
a pre-trained model to compute the camera matrix, which is
further combined with 68 key points on the face to estimate
the gaze direction.

3) Saliency Estimation Baseline: Human attention is closely
related to saliency. Therefore, we select a saliency estimation
baseline.

a) Multi-scale salient object detection (MSOD) [62]: In
this work, the model extracts multi-level features from an RGB
image and integrates multi-scale information from a specific
level to generate the final saliency prediction.

D. Metric

For human attention prediction methods, their outputs
can be classified into four categories: 1) attention direction
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TABLE II

COMPARISON WITH BASELINES ON THE CAD120 DATASET. T1 TO T9 CORRESPOND TO THE TASKS OF T1: ARRANGING OBJECTS, T2: CLEANING
OBJECTS, T3: MAKING CEREAL, T4: MICROWAVING FOOD, T5: PICKING OBJECTS, T6: STACKING OBJECTS, T7: TAKING FOOD, T8: TAKING

MEDICINE, AND T9: UNSTACKING OBJECTS

Fig. 3. Metric visualization.

(e.g., FHPE [60] and JFR [61]), 2) attention point (e.g.,
WATL [47]), 3) attention object (e.g., TDOD [58] and
HAI [59]) and 4) attention probability map (e.g., MSOD [62]).
An attention direction can be computed using an attention
point or attention object. Note that an attention probability map
can be combined with object detection to obtain an attention
object, thus an attention direction can also be computed
using an attention probability map. We can find that attention
direction is the basic information that all methods share.
Therefore, it is fair and comparable to use attention direction
to evaluate the baseline methods. For all baseline methods,
an attention direction is firstly computed based on their own
output. As shown in Fig. 3, given a testing image, if the
attention direction line intersects with the ground truth of the
attention object, human attention in this image is counted to
be correctly estimated. The ratio of correctly estimated images
to all testing images is taken as the metric.

The output of FHPE [60] and JFR [61] is attention direction
indicated by human head/face orientation. The output of these
two baselines is directly used as the attention direction line
shown in Fig. 3. The output of TDOD [58], HAI [59] and
our model is human attention object. For these three meth-
ods, the line, which starts from the human head and passes
through the center point of the predicted attention object,
is used as the attention direction line. The output of WATL [47]
is the attention point. The line, which starts from the human
head and passes through the predicted attention point, is used
as the attention direction line. The output of MSOD [62] is
a saliency probability map, which is same as the attention
map defined in Eq. 6. Therefore, the procedure to compute
the attention direction line is same as that of our method.

E. Experiment Results and Analysis

Four kinds of experiments are conducted. Firstly, six base-
lines are compared with our model on the CAD-120 and TIA
datasets. Secondly, top-down task guidance experiments are
performed to evaluate the effects of different task encoding

strategies and the performance improvement after applying
the task-guidance module. Thirdly, bottom-up stimulus experi-
ments are conducted to evaluate the effects of different bottom-
up cues. Fourthly, different temporal encoding categories
and temporal durations are evaluated to explore a robust
spatial-temporal inference model. The results and analysis are
detailed as follows.

1) Compare With Baselines: Table II shows the per-
formance of the baseline models and our model on the
CAD-120 dataset, and some qualitative examples are shown
in Fig. 4. We compute the overall performance of each model
on all tasks as well as the performance on the individual
task. Our model outperforms all baselines on the overall
performance, and achieves the highest performance on the
majority of individual tasks. The advantage benefits from our
proposed bottom-up and top-down integration model. On the
one hand, the pose and motion cues are utilized in the
bottom-up stimulus module. The pose and motion directly
indicate the objects a human is reaching and moving to, and
these objects tend to be the attention objects in common cases.
For example, as shown in Fig. 4, many attention objects are
revealed by the locations and orientations of the human’s
head, arms, and hands. On the other hand, the top-down task
guidance module provides the task embedding information to
assist the model to accurately locate the task-driven attention
objects.

In Table II, we note the proposed model exhibits poor
performance on the tasks of T1: arranging objects and T5:
picking objects. The reason lies in the high failure of object
detection. In these two tasks, attention objects are not detected
in many video frames, so that object-level attention predictions
in these frames are failed, even though pixel-level attention
probability maps are correctly estimated. The failure cases will
be further discussed in the following Dicussion section.

Table III shows comparison results on the TIA dataset, and
some qualitative examples are shown in Fig. 5. Similar to the
result on the CAD dataset, we can observe that our model
also presents a distinct advantage on the overall tasks and
the majority of individual tasks, demonstrating the general
applicability of our proposed bottom-up and top-down integra-
tion model. As shown in Fig. 5, our model could successfully
predict the attention objects that are far from the human and
the attention objects with small sizes, even in the scenes with
complex backgrounds and noisy objects. In task T4: clean
board, our model behaves badly. The reason is the object
‘eraser’ in this task is not well detected.
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Fig. 4. The qualitative results of our model on the CAD dataset. Different columns correspond to the examples in different tasks. In each column, the raw
image (top row), predicted attention probability map (middle row), predicted attention object (green box in bottom row) and ground truth attention object (red
box in bottom row) are shown.

TABLE III

COMPARISON WITH BASELINES ON THE TIA DATASET. T1 TO T14 CORRESPOND TO THE TASKS OF TASKS. T1: SWEEP FLOOR, T2: MOP FLOOR,
T3: WRITE ON BOARD, T4: CLEAN BOARD, T5: USE ELEVATOR, T6: POUR LIQUID, T7: MAKE COFFEE, T8: READ BOOK, T9: THROW TRASH,

T10: HEAT FOOD, T11: USE COMPUTER, T12: SEARCH DRAWER, T13: MOVE BOTTLE, AND T14: OPEN DOOR

TABLE IV

EFFECT OF TASK ENCODING CATEGORIES

2) Effect of Top-Down Task Guidance: Firstly, we are
interested in studying how different task encoding categories
affect the performance, and the experiment results are shown
in Table IV. Three categories, including sub-task encoding,
task encoding and sub-task&task encoding, are tested. The task
encoding is a coarse-grained category that encodes top-down
guidance using the task label, and all frames in a video
share the same task label. The sub-task encoding is a fine-
grained category that encodes top-down guidance using the
sub-task label, and different frames in a video may have
different sub-task labels. The sub-task & task encoding is a
category that involves both coarse-grained and fine-grained
task information. We can observe in Table IV that the sub-
task & task encoding category outperforms the other two
categories.

Secondly, we are interested in studying how much the
task guidance module would improve the performance of
human attention prediction. Therefore, we design an ablation

TABLE V

EFFECT OF TOP-DOWN TASK GUIDANCE

experiment to test the performance in the following two cases:
(1) only using the bottom-up cues and (2) integrating the
bottom-up cues with the top-down task guidance. Table V
shows the results on the TIA and CAD120 datasets. We can
observe that, after adding the task guidance module, the perfor-
mance of our model is significantly improved on both datasets.
The result matches the cognition mechanism that high-level
task information plays an important role in predicting human
attention. The result also verifies the effectiveness of our
proposed top-down task guidance module.

3) Effect of Bottom-Up Stimulus: In the bottom-up stimulus
module, two cues are used, including human motion and
human pose. We are interested in verifying how much these
cues contribute to the performance improvement. Therefore,
we design an ablation experiment. The experiment results
are shown in Table VI. We can observe that our model
achieves the highest performance when all bottom-up cues are
used, demonstrating the effectiveness of each bottom-up cue.
Another subtle phenomenon is that human pose cue seems to
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Fig. 5. The qualitative results of our model on the TIA dataset. Different columns correspond to the examples in different tasks. In each column, the raw
image (top row), predicted attention probability map (middle row), predicted attention object (green box in bottom row) and ground truth attention object (red
box in bottom row) are shown.

TABLE VI

EFFECT OF BOTTOM-UP CUES

TABLE VII

EFFECT OF DIFFERENT SPATIAL-TEMPORAL INFERENCE MODULES

be more helpful than human motion cue. Human pose conveys
the position information of human body parts, including arms
and hands. When an attention object is near to a human,
the human usually uses hands to move to and operate on
the attention objects, so that the attention objects are, to a
large extent, revealed by human pose. In addition, the human
pose potentially contains the information of gaze (i.e., where a
human is gazing at). As we know, when an attention object is
far from a human, the attention object is generally indicated
by the human gaze. Different from the human pose, human
motion emphasizes the information of human body moving
direction, which is not that helpful than human pose.

4) Effect of Spatial-Temporal Inference: Besides the
bottom-up stimulus module and top-down guidance module,
our model also consists of another important module named
the spatial-temporal inference module. The function of this
module is to fuse the spatial information of different frames
in an image sequence. Spatial-temporal inference can be
implemented using different networks. To find an appropri-
ate network, three different deep neural networks, including
ConvLSTM, convGRU, and conv3D, are tested. As shown

TABLE VIII

EFFECT OF TEMPORAL DURATION

in Table VII, the convLSTM network exhibits best perfor-
mance on both datasets.

An important factor influencing the performance of the
spatial-temporal inference module is the temporal duration of
an image sequence. To test the effect of the temporal duration,
the performance of our model with different durations are
computed on both datasets. The results are shown in Tab. VIII.
We note that setting duration as 1 equals to disabling the
spatial-temporal inference. We can observe that our model
achieves the best performance when the duration is 8, and
too long or too short duration leads to the degradation of
performance. The potential reason is that the temporal relation
can hardly be learned from an image sequence with the
short duration. A long duration will inevitably involve more
complex relations that are difficult to learn. In addition, too
long duration involves more parameters of the module, making
it difficult to train the model.

F. Discussion

1) Attention Object Is Not Detected: For attention objects
that are heavily occluded, easily confused with background,
extremely small, or with sparse training samples, they might
not be detected. In this kind of case, our model outputs none
attention object (as shown in Fig. 6(a)) or false attention
object (as shown in Fig. 6(b)). We can observe the predicted
pixel-level probability maps are correctly estimated, but the
attention object predictions are failed due to the failure of
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Fig. 6. Typical failure cases. (a) and (b) are the examples that the failure object detection leads to the failure of attention object prediction. (c) is the example
that the information in the image is not enough to confirm the attention objects when multiple objects present high probabilities of being attention object.
(d) and (e) are the examples that human pose falsely indicates the attention objects, when the ground truth attention objects are far from the human. Green
boxes are predicted attention objects and red boxes are ground truth attention objects.

object detection. We note that the focus of this paper is not
object detection, thus only a commonly-used object detector
is adopted. If the object detector is optimized according to the
scenarios, the performance will be further improved.

2) Attention Object Is Near to or Overlapped With Other
Objects: As shown in Fig. 6(c), both plates exhibit the
high probabilities of being the attention object. This is a
difficult situation because the bottom-up cues (i.e., human
pose and motion) cannot obviously indict which plate is the
attention object, thus our model outputs an inaccurate attention
probability map. Actually, the top-down task information is
helpful in this kind of situation. Our proposed top-down
guidance module benefits to improve the attention prediction
performance as shown in Tab. V, but it does not work in all
scenarios, and we hope this case could inspire researchers to
explore a more effective way to make use of the top-down
task information.

3) Attention Object Is Misguided By Human Hands: In most
cases, human hands, as a part of human pose cue, directly
reveal the attention objects. However, in some complex scenar-
ios (e.g., attention object is far from human), human hand cue
is sometimes hysteretic when predicting the attention object.
In contrast, the attention object is indicated in advance by
the human body moving direction or human gaze. As shown
in Fig. 6(d) and (e), the ground truth attention objects (red
boxes) are not the objects that are near to human hands, but
the objects the human is gazing at or moving to. Our model
outputs the wrong prediction. One main reason is that the
model learns to fit the majority of data in a dataset, while the
cases shown in Fig. 6(d) and (e) account for a few proportions
in the dataset.

VI. CONCLUSION AND FUTURE WORK

The problem handled by this paper is motivated by the
application of human attention prediction in a human-robot

coexistence scenario where the robot predicts human atten-
tion objects to assist disabled or injured people to do some
simple tasks like grasping and moving objects. Inspired by
the cognition mechanism that human attention is controlled
by both bottom-up and top-down information, the top-down
task guidance is computationally modeled to integrate with the
bottom-up cues to predict task-driven attention. Many exper-
iments are conducted to evaluate our model, and the experi-
ment results demonstrate that the proposed model exhibits a
significant advantage in performance, robustness, and general
applicability on two public datasets.

Several important conclusions are drawn through this study.
We list the conclusions here and hope they could benefit
the related studies in the community. First of all, the task
is the core of daily human activities. As long as a human
is not insensible, the human always allocates the attention
under the guidance of the intended task in mind. Therefore,
it is of tremendous research significance to study task-driven
attention. Secondly, for task-driven attention, an object with
salient color, texture, size, or motion might not be an atten-
tion object. Conversely, it is to a large extent indicated by
task-related information and human own information such
as human pose and motion. Thirdly, the task is abstract
and difficult to computationally modeled. Though our paper
proposes a task encoding method and fuses the task encoding
feature with the bottom-up cues, there is still a long way
to explore more effective and cognitively-explanatory models.
Fourthly, when encoding task information, the category fusing
both the task and sub-task encoder behaves better than that
encodes the individual task or sub-task because it utilizes both
the coarse-grained and fine-grained task information. Fifthly,
for the bottom-up cues, the human pose presents to be effective
because it contains the position information of human body
parts and indicates human gaze, and these information are
important for predicting task-driven attention objects.
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The goal of this study is to build a human-like and
cognitively-explanatory model to predict TDAttention. Though
the idea of the proposed model is identical with the human
attention allocation mechanism that is controlled by both
top-down guidance and bottom-up stimulus, there is still a long
way to develop more effective and explanatory models. In a
scenario where a human is doing a task, the semantic relations
between the human, objects, and the scene covey informative
cues for attention prediction. Therefore, our future work would
model the scenario semantic relations to enrich the bottom-
up module. In addition, future work will also focus on how
to involve more top-down task information and seamlessly
integrate it with the bottom-up cues.
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