Effects of Augmented-Reality-Based Assisting Interfaces on Drivers’ Object-wise Situational Awareness in Highly Autonomous Vehicles

Xiaofeng Gao, Xingwei Wu, Samson Ho, Teruhisa Misu, Kumar Akash
UCLA
Work Done during Internship at Honda Research Institute USA
Background

• Fully-automated vehicles are not yet well-developed
• Necessary to maintain drivers' situation awareness (SA) for semi-autonomous vehicles
 • Prepare them for sudden maneuvers and possible take-overs
 • Form basis of trust
• However, SA reduce as drivers are becoming out of the loop
Related Work

• Possible solution to provide situational information: user interface based on head-up displays (HUDs)
 • Example: highlighting detected objects using bounding boxes or semantic segmentation

• Limitations in existing study
 • Specifically designed scenarios
 • Aimed for long term effects of highlighting on SA
 • All objects are always/never highlighted throughout the drive

• Our contributions
 • Standardized scenarios in intersections
 • Novel protocol to examine short term effects on SA
User Study Basics

- Implemented in the UE4-based driving simulator
- Highlight object using bounding boxes
- Tobii-glasses to collect gaze data
- Pause to get SA response (SAGAT)
- Effects of highlighting on object SA:
 - Traffic density (low/high)
 - Object positions in the intersection
 - Object types (car/pedestrian)
Object Position Discretization

- Discretize object positions based on the visual saliency
 - 1: top center; 2: bottom center; 3: bottom left and bottom right; 4: top left and top right
- Pedestrian movements:
 - A: area 1; B: areas 3 and 4; C: moving in areas 2 and 3; D: moving in areas 1 and 3
- Similar discretization can be applied to car movements
Study Design

- Traffic Density for intersections
 - Light (5 objects)
 - Dense (10 objects)
- Each drives contain 3 pairs of intersections
 - Forward: a1, a2
 - Left: b1, b2
 - Right: c1, c2
 - Similar events in one pair
 - SAGAT timing is different
 - a1, b1, c1: early (at t)
 - a2, b2, c2: late (at t+1)
- Goal: quantify the effects of highlighting during the delayed period
Effects of Human-Machine Interface on Driver’s Situational Awareness

Forward Scenarios: a1 and a2

- Ego car going **straight** is waiting by the stop sign
- Target objects: pedestrians A; cars G and F
- SAGAT timing:
 - A at 1, G at 1, F at 2
Forward Scenario Demo

• a1: early SAGAT, top center pedestrian and center cars unhighlighted

• a2: late SAGAT, top center pedestrian and center cars highlighted
Left Scenarios: b1 and b2

- Ego car going **left** is waiting by the stop sign
- Target objects: pedestrians B, C, car G
- SAGAT timing:
 - B at 4 (left), C at 2, G at 4 (right)
Left Scenario Demo

- **b1**: early SAGAT, top left pedestrian, bottom center pedestrian and top right car unhighlighted

- **b2**: late SAGAT, top left pedestrian, bottom center pedestrian and top right car highlighted
Right Scenarios: c1 and c2

- Ego car going **right** is waiting by the stop sign
- Targets: ped D, cars F
- SAGAT timing:
 - D at 3 (right), F at 3 (left)
Right Scenario Demo

- c1: early SAGAT, bottom right pedestrian and bottom left car unhighlighted

- c2: late SAGAT, bottom right pedestrian and bottom left car highlighted
Data collection and annotation

- 20 participants, each experiences 2 drives with different density
 - Group 1: LT1 and DT2
 - Group 2: DT2 and LT1
 - Group 3: LT2 and DT1
 - Group 4: DT1 and LT2
- Collect SA response on objects (threshold: 50)
- Fixations
 - Tobii glasses for eye movements
 - Annotate the target object locations using vatic
 - Criteria:
 - minimum gaze distance 4.1 degrees
 - minimum fixation dwell time 120ms
Fixation time

- **Top center pedestrians** get more fixation when highlighted for **light traffic**
SA Transition Matrix across objects

- SA change as a result of highlighting
- Darker color means more proportion
- With highlighting vs without
 - More improve their SA at light traffic (top right: low to high)
 - More keep the correct answers (bottom right: high to high)
 - Less stick to low SA at light traffic (top left: low to low)
 - Less switch to low SA (bottom left: high to low)

With Highlighting

<table>
<thead>
<tr>
<th>Density</th>
<th>SA at t</th>
<th>SA at t+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>High</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>high</td>
</tr>
</tbody>
</table>

Without Highlighting

<table>
<thead>
<tr>
<th>Density</th>
<th>SA at t</th>
<th>SA at t+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>High</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>high</td>
</tr>
</tbody>
</table>
SA Transition Matrix (Object-wise)

- Object SA improved with highlighting
- Top center pedestrian at light traffic

With Highlighting

Without Highlighting

Effects of Human-Machine Interface on Driver’s Situational Awareness

May 21, 2022
SA Transition Matrix (Object-wise)

• Object SA deteriorated with highlighting
• Bottom center car at heavy traffic
SA response accuracy

- Accuracy of SAGAT response on target objects in delayed intersections (a2, b2, c2)
 - Highlighting increases SA accuracy significantly
 - At light traffic
 - Top center pedestrian
 - Top right car
 - Highlighting decreases SA accuracy significantly
 - At high traffic
 - Bottom center car
 - Top center car
Conclusions

• Take-away: highlighting via HUD has mixed SA effects
 • Positive impact on object SA when
 • light traffic
 • low visual saliency for objects
 • Negatively affects object SA when
 • dense traffic
 • the object is salient even without highlighting

• Future work
 • An adaptive user interface that can highlight important objects selectively to maintaining low workload and high SA
Thank You