Joint Mind Modeling for Explanation Generation in Complex Human-Robot Collaborative Tasks

Xiaofeng Gao1*, Ran Gong1*, Yizhou Zhao1, Shu Wang1, Tianmin Shu2, Song-Chun Zhu1

University of California, Los Angeles, USA1
Massachusetts Institute of Technology2
Motivation

• Humans can work towards a common goal even though one doesn’t know the exact details of the task
• Communication is necessary for coordination
• Efficient communication comes from inferring other’s belief, desire, or intention
Collaborative Cooking Game

Task Example:
making apple juice with 3 apples

A Task Plan:
- Take each apple from the basket
- Put it onto chopping board and cut it
- Put it into a juicer
- Use the juicer
- Pour the juice into a bowl
- Deliver the juice

Sub-tasks dependency

For better task performance, how should the robot coordinate with non-expert users?
For task allocation, we minimize the amount of time for the slower agent to finish the task, with respect to variables:

- Binary decision variable \(x \): whether to assign a “task” to an agent \(v \)
- Continuous timing variable \(t \): the time that a certain atomic action is performed
- Constraint: generated based on causal and temporal structure of task

\[
\min_{x,t} \quad \max_{v \in V} \quad \sum_{i,j,k} x_{i,j,k}^v T_{i,j,k}^v \\
\text{subject to} \quad x \in X_{\text{feasible}}, \quad t \in T_{\text{feasible}}.
\]
Explanation framework

- Planning
 - To get an initial joint plan
- Inference
- Explanation
- Re-planning
 - To comply with suboptimal user behaviors

Algorithm 1: Planning and explanation generation

1. while Task not finished do
2. if Replan needed then
3. Collect state information from the game;
4. Collect predicted human intentions from the last time step;
5. Call DP planner;
6. Obtain a new sequence of sub-tasks from planner and re-organize AoG based on it;
7. Parse AoG through checking pre-conditions and post-effects against the current environment state information;
8. Find out the next atomic action to execute based on parsing result;
9. Predict human intentions by equation (6);
10. Measure the difference between predicted intention and expected human actions;
11. Generate an explanation if the difference > τ;
Human mental model inference

- Bayesian inference of user subtasks

\[\hat{p}g^h = \arg \max_{pg^h} p(pg^h|D_T, G) \]
\[\propto p(pg^h|G, D_{T-1})p(d_T|pg^h, G) \]

- We consider communication history \(m \) and observed user action \(a_{obs}^h \) independently in the likelihood

\[p(d|pg^h, G) = p(a_{obs}^h|pg^h, G)p(m_r|pg^h, G), \]
\[p(a_{obs}^h|pg^h, G) = \sum_{a_{samp}^h} p(a_{samp}^h|pg^h)p(a_{obs}^h|a_{samp}^h) \]

likelihood of sampled trajectory

Similarity between partially observed trajectory and sampled trajectory
Inferring human intention/plan based on observations

• Sampled trajectories

• Observed Trajectories

Based on the distance between a^h_{obs} and a^h_{samp}, a reasonable prediction of user’s action would be “taking the bowl”
Explanation generation

Explanation content: How much to say
• By modeling user’s task plan pg^{UinM}, the machine can give detailed explanations to improve the task performance, i.e. the machine can communicate the current subtasks and atomic actions of both agents.

Explanation timing: When to say
• By modeling user’s task plan pg^{UinM} during collaboration, the machine can generate explanations at a more appropriate time, i.e. when the expected user subtasks are different from the inferred subtasks.
Example: make apple juice with 3 apples
Experiment Procedure

Control
- **Introduction**: An introduction of the experiment. Showing an explanation template.

Heuristics
- **Familiarization**: Asking users to finish a simple task to help them get familiar with the control.
- **Testing**: No Explanation
 - Explain when there is no detected user action
 - Explanation generated by the algorithm at the proposed timing.

Mind Modeling
- **Evaluation**: Post experiment survey

N=27, non-expert users
Experiment Result on 2 Hypotheses

H1: Using explanations generated by the proposed algorithm would lead to more fluent teamwork
 • Task completion time

H2: Participants under different testing conditions would have different levels of perceptions of explanations, indicated by the subjective measures
 • Efficiency
 • Helpfulness

• Confirmed H1 and H2
• Take-away Message: with proper communication between human and machine, both the task performance and user’s perception about the machine can be improved.

*: p < .05
**: p < .01
Limitations and future work

• Task and environment
 • Shared workspace
 • Diverse strategies
• Balanced roles for the human and machine
• Explanation content
 • Identify the problem
 • Tailored to the user’s need

“Robots Make Bavarian Breakfast Together.” IEEE Spectrum
Any questions?

For more information, contact Xiaofeng Gao (xfgao@ucla.edu).