Joint Mind Modeling for Explanation Generation in Complex Human-Robot Collaborative Tasks

Xiaofeng Gao^{1*}, Ran Gong^{1*}, Yizhou Zhao¹, Shu Wang¹, Tianmin Shu², Song-Chun Zhu¹

University of California, Los Angeles, USA¹

Massachusetts Institute of Technology²

Motivation

- Humans can work towards a common goal even though one doesn't know the exact details of the task
- Communication is necessary for coordination
- Efficient communication comes from inferring other's belief, desire, or intention

Collaborative Cooking Game

• Task Example:

making apple juice with 3 apples

- A Task Plan:
 - Take each apple from the basket
 - Put it onto chopping board and cut it
 - Put it into a juicer
 - Use the juicer
 - Pour the juice into a bowl
 - Deliver the juice
- Sub-tasks dependency

For better task performance, how should the robot coordinate with non-expert users?

Task Allocation by Mixed-Integer Linear Programming

For task allocation, we minimize the amount of time for the slower agent to finish the task, with respect to variables:

- Binary decision variable x: whether to assign a "task" to an agent v
- Continuous timing variable *t*: the time that a certain atomic action is performed
- Constraint: generated based on causal and temporal structure of task

 $\min_{x,t} \max_{v \in V} \sum_{i,j} x_{i,j,k}^v \tau_{i,j,k}^v$ subject to $x \in X_{\text{feasible}}, t \in T_{\text{feasible}}.$

Planning

- To get an initial joint plan
- Inference
- Explanation
- Re-planning
 - To comply with suboptimal user behaviors

Algorithm 1: Planning and explanation generation

8 8 1 8	
1 while Task not finished do	
2	if Replan needed then
3	Collect state information from the game;
4	Collect predicted human intentions from the last
	time step;
5	Call DP planner ;
6	Obtain a new sequence of sub-tasks from
	planner and re-organize AoG based on it;
7	Parse AoG through checking pre-conditions and
	post-effects against the current environment
	state information ;
8	Find out the next atomic action to execute
	based on parsing result ;
9	Predict human intentions by equation (6);
10	Measure the difference between predicted intention
10	and expected human actions;
11	Generate an explanation if the difference $> \tau$;

• Bayesian inference of user subtasks

$$\hat{pg}^{h} = \arg \max p(pg^{h}|D_{T}, G)$$

$$pg^{h}$$

$$\propto p(pg^{h}|G, D_{T-1})p(d_{T}|pg^{h}, G)$$

 We consider communication history m and observed user action a^h_{obs} independently in the likelihood

 $p(d|pg^h, G) = p(a^h_{obs}|pg^h, G)p(m^r|pg^h, G),$

G)

$$p(a_{obs}^{h}|pg^{h},G) = \sum_{\substack{a_{samp}^{h} \\ samp}} p(a_{samp}^{h}|pg^{h}) p(a_{obs}^{h}|a_{samp}^{h})$$

likelihood of
sampled trajectory
Similarity between partially
observed trajectory and
sampled trajectory

Inferring human intention/plan based on observations

Sampled trajectories

UCLA

Observed Trajectories

Based on the distance between a_{obs}^{h} and a_{samp}^{h} , a reasonable prediction of user's action would be "taking the bowl"

Explanation generation

Explanation content: How much to say

• By modeling user's task plan pg^{UinM}, the machine can give detailed explanations to improve the task performance,

i.e. the machine can communicate the current subtasks and atomic actions of both agents

Explanation timing: When to say

 By modeling user's task plan pg^{UinM} during collaboration, the machine can generate explanations at a more appropriate time,

i.e. when the expected user subtasks are different from the inferred subtasks.

Hints from the robot My current goal is **Getting Apple Slices 1** To achieve it, I would perform the action: **Taking Apple** My action would cause the following state change:

Meanwhile, I expect your goal is

Taking Apple

Preparing Apple1

Your action would cause the following state change:

To achieve it, you should perform the action:

Example: make apple juice with 3 apples

N=27, non-expert users

Experiment Result on 2 Hypotheses

H1: Using explanations generated by the proposed algorithm would lead to more fluent teamwork

• Task completion time

H2: Participants under different testing conditions would have different levels of perceptions of explanations, indicated by the subjective measures

- Efficiency
- Helpfulness
- Confirmed H1 and H2
- Take-away Message: with proper communication between human and machine, both the task performance and user's perception about the machine can be improved.

- Task and environment
 - Shared workspace
 - Diverse strategies
- Balanced roles for the human and machine
- Explanation content
 - Identify the problem
 - Tailored to the user's need

"Robots Make Bavarian Breakfast Together." IEEE Spectrum

Any questions?

For more information, contact Xiaofeng Gao (xfgao@ucla.edu).